Spaces:
Runtime error
Runtime error
File size: 7,666 Bytes
09e9630 62dd104 9514db3 c8bce00 1fe5185 c8bce00 f9cae44 c8bce00 62dd104 c8bce00 621fa8e f9cae44 621fa8e f9cae44 c8bce00 5a82878 c8bce00 9514db3 c8bce00 1fe5185 c8bce00 f9cae44 c8bce00 45fd8d5 2af81ab c8bce00 45fd8d5 c8bce00 5a82878 c8bce00 5a82878 c8bce00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
#
# Copyright 2016 The BigDL Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
# Part of the code in this file is adapted from
# https://github.com/rnwzd/FSPBT-Image-Translation/blob/master/eval.py and
# https://github.com/rnwzd/FSPBT-Image-Translation/blob/master/train.py
# MIT License
# Copyright (c) 2022 Lorenzo Breschi
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
import gradio as gr
import numpy as np
import time
from data import write_image_tensor, PatchDataModule, prepare_data, image2tensor, tensor2image
import torch
from tqdm import tqdm
from bigdl.nano.pytorch import InferenceOptimizer
from torch.utils.data import DataLoader
from pathlib import Path
from torch.utils.data import Dataset
import datetime
import huggingface_hub
device = 'cpu'
dtype = torch.float32
MODEL_REPO = 'CVPR/FSPBT'
ckpt_path = huggingface_hub.hf_hub_download(
MODEL_REPO, 'generator.pt')
generator = torch.load(ckpt_path)
generator.eval()
generator.to(device, dtype)
params = {'batch_size': 1,
'num_workers': 0}
class ImageDataset(Dataset):
def __init__(self, img):
self.imgs = [image2tensor(img)]
def __getitem__(self, idx: int) -> dict:
return self.imgs[idx]
def __len__(self) -> int:
return len(self.imgs)
data_path = Path('data')
train_image_dd = prepare_data(data_path)
dm = PatchDataModule(train_image_dd, patch_size=2**6,
batch_size=2**3, patch_num=2**6)
# quantize model
train_loader = dm.train_dataloader()
train_loader_iter = iter(train_loader)
quantized_model = InferenceOptimizer.quantize(generator,
accelerator=None,
calib_dataloader=train_loader)
def original_transfer(input_img):
w, h, _ = input_img.shape
print(datetime.datetime.now())
print("input size: ", w, h)
# resize too large image
if w > 3000 or h > 3000:
ratio = min(3000 / w, 3000 / h)
w = int(w * ratio)
h = int(h * ratio)
if w % 4 != 0 or h % 4 != 0:
NW = int((w // 4) * 4)
NH = int((h // 4) * 4)
input_img = np.resize(input_img,(NW,NH,3))
st = time.perf_counter()
dataset = ImageDataset(input_img)
loader = DataLoader(dataset, **params)
with torch.no_grad():
for inputs in tqdm(loader):
inputs = inputs.to(device, dtype)
st = time.perf_counter()
outputs = generator(inputs)
ori_time = time.perf_counter() - st
ori_time = "{:.3f}s".format(ori_time)
ori_image = np.array(tensor2image(outputs[0]))
del inputs
del outputs
return ori_image, ori_time
def nano_transfer(input_img):
w, h, _ = input_img.shape
print(datetime.datetime.now())
print("input size: ", w, h)
# resize too large image
if w > 3000 or h > 3000:
ratio = min(3000 / w, 3000 / h)
w = int(w * ratio)
h = int(h * ratio)
if w % 4 != 0 or h % 4 != 0:
NW = int((w // 4) * 4)
NH = int((h // 4) * 4)
input_img = np.resize(input_img,(NW,NH,3))
st = time.perf_counter()
dataset = ImageDataset(input_img)
loader = DataLoader(dataset, **params)
with torch.no_grad():
for inputs in tqdm(loader):
inputs = inputs.to(device, dtype)
st = time.perf_counter()
outputs = quantized_model(inputs)
nano_time = time.perf_counter() - st
nano_time = "{:.3f}s".format(nano_time)
nano_image = np.array(tensor2image(outputs[0]))
del inputs
del outputs
return nano_image, nano_time
def clear():
return None, None, None, None
demo = gr.Blocks()
with demo:
gr.Markdown("<h1><center>BigDL-Nano inference demo</center></h1>")
with gr.Row().style(equal_height=False):
with gr.Column():
gr.Markdown('''
<h2>Overview</h2>
BigDL-Nano is a library in [BigDL 2.0](https://github.com/intel-analytics/BigDL) that allows the users to transparently accelerate their deep learning pipelines (including data processing, training and inference) by automatically integrating optimized libraries, best-known configurations, and software optimizations. </p>
The video on the right shows how the user can easily enable quantization using BigDL-Nano (with just a couple of lines of code); you may refer to our [CVPR 2022 demo paper](https://arxiv.org/abs/2204.01715) for more details.
''')
with gr.Column():
gr.Video(value="data/nano_quantize_api.mp4")
gr.Markdown('''
<h2>Demo</h2>
This section uses an image stylization example to demostrate the speedup of the above code when using quantization in BigDL-Nano (about 2~3x inference time speedup).
The demo is adapted from the original [FSPBT-Image-Translation code](https://github.com/rnwzd/FSPBT-Image-Translation),
and the default image is from [the COCO dataset](https://cocodataset.org/#home).
''')
with gr.Row().style(equal_height=False):
input_img = gr.Image(label="input image", value="data/COCO_image.jpg", source="upload")
with gr.Column():
ori_but = gr.Button("Standard PyTorch")
nano_but = gr.Button("BigDL-Nano")
clear_but = gr.Button("Clear Output")
with gr.Row().style(equal_height=False):
with gr.Column():
ori_time = gr.Text(label="Standard PyTorch latency")
ori_image = gr.Image(label="Standard PyTorch output image")
with gr.Column():
nano_time = gr.Text(label="BigDL-Nano latency")
nano_image = gr.Image(label="BigDL-Nano output image")
ori_but.click(original_transfer, inputs=input_img, outputs=[ori_image, ori_time])
nano_but.click(nano_transfer, inputs=input_img, outputs=[nano_image, nano_time])
clear_but.click(clear, inputs=None, outputs=[ori_image, ori_time, nano_image, nano_time])
demo.launch(share=True, enable_queue=True) |