Spaces:
Sleeping
Sleeping
File size: 9,681 Bytes
72cfe15 f0b559a 72cfe15 f0b559a 72cfe15 f0b559a 72cfe15 f0b559a 72cfe15 f0b559a 72cfe15 f0b559a 72cfe15 f0b559a 72cfe15 f0b559a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 |
'''
BOTTOM-UP ENUMERATIVE SYTHESIS FOR RASP
Usage:
python rasp_synthesis.py --examples
'''
import numpy as np
import argparse
import itertools
import time
import ast
import re
from tracr.compiler import compiling
from typing import get_args
import inspect
import heapq
from abstract_syntax_tree import *
from python_embedded_rasp import *
# PARSE ARGUMENTS
def parse_args():
'''
Parse command line arguments.
'''
parser = argparse.ArgumentParser(description="Bottom-up enumerative synthesis for RASP.")
parser.add_argument('--examples', required=True, help="input/output sequence examples for synthesis")
parser.add_argument('--max_weight', type=int, required=False, default=10, help="Maximum weight of programs to consider before terminating search.")
args = parser.parse_args()
return args
# ANALYZE EXAMPLES
def analyze_examples(inputs):
'''
Returns a list of unique (input_sequence, output_sequence) tuples of proper python types.
Ensures each example is only numeric values or only char values.
Returns useful constants given the input examples.
'''
example_ins = []
example_outs = []
try:
# Safely evaluate the string to a Python object
examples_lst = ast.literal_eval(inputs)
except (SyntaxError, ValueError) as e:
raise argparse.ArgumentTypeError(f"Invalid examples format: {e}")
if not isinstance(examples_lst, list):
raise ValueError("Input should be a list.")
for ex in examples_lst:
try:
ins, outs = ex[0], ex[1]
except:
raise argparse.ArgumentTypeError(f"Invalid examples format.")
def same_legal_type(lst):
return (all(isinstance(x, int) for x in lst) or
all(isinstance(x, float) for x in lst) or
all(isinstance(x, bool) for x in lst) or
all(isinstance(x, str) for x in lst))
if same_legal_type(ins) and same_legal_type(outs):
example_ins.append(ins)
example_outs.append(outs)
continue
raise argparse.ArgumentTypeError(f"Each example must have consistent types. Expected inputs to have type {first_in_type} and outputs to have {first_out_type} but instead inputs have types {[type(x) for x in ins]} and outputs have types {[type(x) for x in outs]}")
return example_ins, example_outs
# GET VOCABULARY
def get_vocabulary(examples):
'''
Returns vocabulary for later compiling the RASP model.
'''
vocab = []
for ex in examples:
ins, outs = ex[0], ex[1]
vocab.extend([obj for obj in ins])
return set(vocab)
# CHECK OBSERVATIONAL EQUIVALENCE
def check_obs_equivalence(examples, program_a, program_b):
try:
inputs = [example[0] for example in examples]
a_output = None
b_output = None
if program_a not in rasp_consts:
a_output = [program_a.evaluate(input) for input in inputs]
if program_b not in rasp_consts:
b_output = [program_b.evaluate(input) for input in inputs]
except:
return True # force the synthesizer to not consider this program
return a_output == b_output
# CHECK CORRECTNESS
def check_correctness(examples, program):
'''
Checks if the programs output matches expected output on all examples.
'''
try:
inputs = [example[0] for example in examples]
outputs = [example[1] for example in examples]
program_output = [program.evaluate(input) for input in inputs]
except:
return False
is_correct = (program_output == outputs)
num_correct = sum([int(p == o) for p,o in zip(program_output, outputs)]) + \
sum([int(type(i) == type(j)) for p,o in zip(program_output, outputs) for i,j in zip(p, o)])
return is_correct, num_correct
# COMPARE TYPE SIGNATURES
def compare_types(list1, list2):
for idx, type1 in enumerate(list1):
if idx >= len(list2):
return False # The first list is longer than the second list
type2 = list2[idx]
# Check if type2 is a Union
if hasattr(type2, '__origin__') and type2.__origin__ is Union:
# Extract types from Union
types_in_union2 = get_args(type2)
# Check if type1 is a Union
if hasattr(type1, '__origin__') and type1.__origin__ is Union:
types_in_union1 = get_args(type1)
# Check if all types in type1's Union are in type2's Union
if not all(any(t1 == t2 for t2 in types_in_union2) for t1 in types_in_union1):
return False
else:
# Check if type1 is in type2's Union
if not any(type1 == t2 for t2 in types_in_union2):
return False
else:
# Direct type comparison
if type1 != type2:
return False
return True
# RUN SYNTHESIZER
def run_synthesizer(examples, max_weight):
'''
Run bottom-up enumerative synthesis.
'''
program_bank = rasp_consts
program_bank_str = [p.str() for p in program_bank]
approx_progs = []
# iterate over each level
for weight in range(2, max_weight):
for op in rasp_operators:
combinations = itertools.permutations(program_bank, op.n_args)
for combination in combinations:
type_signature = [p.return_type for p in combination]
if not compare_types(type_signature, op.arg_types):
continue
if sum([p.weight for p in combination]) > weight:
continue
program = OperatorNode(op, combination)
if program.str() in program_bank_str:
continue
if any([check_obs_equivalence(examples, program, p) for p in program_bank]):
continue
program_bank.append(program)
program_bank_str.append(program.str())
is_correct, num_correct = check_correctness(examples, program)
if is_correct:
return(program), [ap[1] for ap in approx_progs]
if len(approx_progs) >= 3:
correct_cutoff, _prog = heapq.heappop(approx_progs)
if num_correct > correct_cutoff:
heapq.heappush(approx_progs, (num_correct, program.str()))
else:
heapq.heappush(approx_progs, (correct_cutoff, _prog))
else:
heapq.heappush(approx_progs, (num_correct, program.str()))
return None, [ap[1] for ap in approx_progs]
# COMPILE RASP MODEL
if __name__ == "__main__":
'''
Some examples:
Identify anagrams:
[[['V','I','W',',','W','I','V'], [True, True, True, True, True, True, True]],[['a','b',',','b','a'], [True, True, True, True, True]],[['e','l',',','s','t'], [False, False, False, False, False]]]
Output: times out
Calculate the median of a list of numbers:
[[[1,2,3,4,5], [3,3,3,3,3]], [[2,8,10,11], [9,9,9,9]], [[1,2,3],[2,2,2]]]
Output: times out
Identity function:
[[['h','i'], ['h','i']]]
Output: (aggregate((select(tokens, tokens, ==)), tokens))
Histogram:
[[['h', 'e', 'l', 'l', 'o'], [1,1,2,2,1]]]
Output: (select_width((select(tokens, tokens, ==))))
Length:
[[[7,2,5],[3,3,3]],[[1],[1]],[[2,0,1,7,3,6,8,20],[8,8,8,8,8,8,8,8]]]
Output: (select_width((select(tokens, tokens, true))))
Calculate mean of list of numbers:
[[[5,10,3,2,43], [12.6, 12.6, 12.6, 12.6, 12.6]],[[1,2], [1.5, 1.5]],[[3,3,3],[3,3,3]]]
Output: (aggregate((select(tokens, tokens, true)), tokens))
Reverse a string:
[[['h', 'i'], ['i', 'h']]]
Output: times out
Expected: aggregate(select(indices, (select_width((select(tokens, tokens, true)))) - indices - 1, ==), tokens);
PERSONAL TODOS:
- output several similar programs
-
'''
args = parse_args()
inputs, outs = analyze_examples(args.examples)
examples = list(zip(inputs, outs))
print("Received the following input and output examples:")
print(examples)
max_seq_len = 0
for i in inputs:
max_seq_len = max(len(i), max_seq_len)
vocab = get_vocabulary(examples)
print("Running synthesizer with")
print("Vocab: {}".format(vocab))
print("Max sequence length: {}".format(max_seq_len))
print("Max weight: {}".format(args.max_weight))
program, approx_programs = run_synthesizer(examples, args.max_weight)
if program:
algorithm = program.to_python()
bos = "BOS"
model = compiling.compile_rasp_to_model(
algorithm,
vocab=vocab,
max_seq_len=max_seq_len,
compiler_bos=bos,
)
def extract_layer_number(s):
match = re.search(r'layer_(\d+)', s)
if match:
return int(match.group(1)) + 1
else:
return None
layer_num = extract_layer_number(list(model.params.keys())[-1])
print(f"The following program has been compiled to a transformer with {layer_num} layer(s):")
print(program.str())
else:
print("No exact program found but here is some brainstorming fodder for you: {}".format(approx_programs)) |