CSharpAI / app.py
MadhuP's picture
Update app.py
3f79358
raw
history blame
9.93 kB
from transformers.pipelines.image_segmentation import Predictions
from transformers import DistilBertForSequenceClassification, DistilBertTokenizer
import unidecode, re, unicodedata
from bs4 import BeautifulSoup
from urllib.request import urlopen
from urllib.parse import urlparse
from sklearn.metrics import confusion_matrix, accuracy_score
import torch.nn.functional as F
import gradio as gr
import torch
import nltk
def check_by_url(txt_url):
parsed_url = urlparse(txt_url)
url = (f"{parsed_url.scheme}://{parsed_url.netloc}{parsed_url.path.rsplit('/', 1)[0]}/")
print(url)
new_data = []
page = urlopen(url=url).read().decode("utf-8")
soup = BeautifulSoup(page, "html.parser")
title = soup.find("title").get_text()
# remove punctuations from title
def remove_punctuation(title):
punctuationfree = "".join([i for i in title if i not in string.punctuation])
return punctuationfree
css_class_to_remove = ("dp-highlighter") # Replace with the CSS class you want to remove
# Find <div> tags with the specified CSS class and remove their content
div_tags = soup.find_all(["code", "pre"])
for div_tag in div_tags:
div_tag.clear()
div_tags = soup.find_all("div", class_=css_class_to_remove)
for div_tag in div_tags:
div_tag.clear()
# Fetch content of remaining tags
content_with_style = ""
p_tags_with_style = soup.find_all("p", style=True)
for p_tag in p_tags_with_style:
p_content = re.sub(r"\n", "", p_tag.get_text())
content_with_style += p_content
# Fetch content of <p> tags without style
content_without_style = ""
p_tags_without_style = soup.find_all("p", style=False)
for p_tag in p_tags_without_style:
p_content = re.sub(r"\n", "", p_tag.get_text())
content_without_style += p_content
# Replace Unicode characters in the content and remove duplicates
normalized_content_with_style = re.sub(r"\s+", " ", content_with_style) # Remove extra spaces
normalized_content_with_style = normalized_content_with_style.replace("\r", "") # Replace '\r' characters
normalized_content_with_style = unicodedata.normalize("NFKD", normalized_content_with_style)
normalized_content_with_style = unidecode.unidecode(normalized_content_with_style)
normalized_content_without_style = re.sub(r"\s+", " ", content_without_style) # Remove extra spaces
normalized_content_without_style = normalized_content_without_style.replace("\r", "") # Replace '\r' characters
normalized_content_without_style = unicodedata.normalize("NFKD", normalized_content_without_style)
normalized_content_without_style = unidecode.unidecode(normalized_content_without_style)
normalized_content_with_style += normalized_content_without_style
new_data = {"title": title, "content": normalized_content_with_style}
# return new_data
model = DistilBertForSequenceClassification.from_pretrained(".")
tokenizer = DistilBertTokenizer.from_pretrained(".")
label_mapping = {1: "SFW", 0: "NSFW"}
test_encodings = tokenizer.encode_plus(
title,
truncation=True,
padding=True,
max_length=512,
return_tensors="pt"
)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
test_input_ids = test_encodings["input_ids"].to(device)
test_attention_mask = test_encodings["attention_mask"].to(device)
with torch.no_grad():
model = model.to(device)
model.eval()
outputs = model(test_input_ids, attention_mask=test_attention_mask)
logits = outputs.logits
predicted_labels = torch.argmax(logits, dim=1)
probabilities = F.softmax(logits, dim=1)
confidence_score_title = torch.max(probabilities, dim=1).values.tolist()
predicted_label_title = label_mapping[predicted_labels.item()]
test_encodings = tokenizer.encode_plus(
normalized_content_with_style,
truncation=True,
padding=True,
max_length=512,
return_tensors="pt",
)
test_input_ids = test_encodings["input_ids"].to(device)
test_attention_mask = test_encodings["attention_mask"].to(device)
with torch.no_grad():
outputs = model(test_input_ids, attention_mask=test_attention_mask)
logits = outputs.logits
predicted_labels = torch.argmax(logits, dim=1)
probabilities = F.softmax(logits, dim=1)
confidence_scores_content = torch.max(probabilities, dim=1).values.tolist()
predicted_label_content = label_mapping[predicted_labels.item()]
return (
predicted_label_title,
confidence_score_title,
predicted_label_content,
confidence_scores_content,
new_data,
#new1,
)
label_mapping = {1: "SFW", 0: "NSFW"} # 1:True 0:false
def predict_2(txt_url, normalized_content_with_style):
(
predicted_label_title,
confidence_score_title,
predicted_label_content,
confidence_scores_content,
new_data,
) = (None, None, None, None, None)
predicted_label_text, confidence_score_text = None, None
if txt_url.startswith("http://") or txt_url.startswith("https://"):
(
predicted_label_title,
confidence_score_title,
predicted_label_content,
confidence_scores_content,
new_data,
) = check_by_url(txt_url)
elif txt_url.startswith(""):
model = DistilBertForSequenceClassification.from_pretrained(".")
tokenizer = DistilBertTokenizer.from_pretrained(".")
test_encodings = tokenizer.encode_plus(
normalized_content_with_style,
truncation=True,
padding=True,
max_length=512,
return_tensors="pt",
)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
test_input_ids = test_encodings["input_ids"].to(device)
test_attention_mask = test_encodings["attention_mask"].to(device)
with torch.no_grad():
model = model.to(device)
model.eval()
outputs = model(test_input_ids, attention_mask=test_attention_mask)
logits = outputs.logits
predicted_labels = torch.argmax(logits, dim=1)
probabilities = F.softmax(logits, dim=1)
confidence_score_text = torch.max(probabilities, dim=1).values.tolist()
predicted_label_text = label_mapping[predicted_labels.item()]
return (
predicted_label_title,
confidence_score_title,
predicted_label_content,
confidence_scores_content,
new_data,
predicted_label_text,
confidence_score_text,
#new,
)
def word_by_word(txt_url, normalized_content_with_style):
if txt_url.startswith("http://") or txt_url.startswith("https://") or txt_url.startswith(""):
(
predicted_label_title,
confidence_score_title,
predicted_label_content,
confidence_scores_content,
new_data,
predicted_label_text,
confidence_score_text,
) = predict_2(txt_url, normalized_content_with_style)
model = DistilBertForSequenceClassification.from_pretrained(".")
tokenizer = DistilBertTokenizer.from_pretrained(".")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = model.to(device)
model.eval()
new_word={}
content_words =[]
words_2 =[]
if predicted_label_content=="NSFW" or predicted_label_text=="NSFW":
if txt_url.startswith("http://") or txt_url.startswith("https://"):
content_words = new_data['content'].split()
else:
words_2 = normalized_content_with_style.split()
results = []
for word in content_words or words_2 :
encoding = tokenizer.encode_plus(
word,
truncation=True,
padding=True,
max_length=512,
return_tensors="pt"
)
input_ids = encoding["input_ids"].to(device)
attention_mask = encoding["attention_mask"].to(device)
with torch.no_grad():
outputs = model(input_ids, attention_mask=attention_mask)
logits = outputs.logits
probabilities = F.softmax(logits, dim=1)
predicted_label = torch.argmax(logits, dim=1).item()
#label_mapping = {1: "SFW", 0: "NSFW"} # 1:True 0:False
predicted_label_word = label_mapping[predicted_label]
confidence_score_word = torch.max(probabilities, dim=1).values.item()
#new_word={}
if predicted_label_word=="NSFW":
result = {"Word": word, "Label": predicted_label_word, "Confidence": confidence_score_word}
results.append(result)
new_word = json.dumps(results)
return(
predicted_label_title,
confidence_score_title,
predicted_label_content,
confidence_scores_content,
new_data,
predicted_label_text,
confidence_score_text,
new_word,
)
demo = gr.Interface(
fn=word_by_word,
inputs=[
gr.inputs.Textbox(label="URL", placeholder="Enter URL"),
gr.inputs.Textbox(label="Text", placeholder="Enter Text"),
],
outputs=[
gr.outputs.Textbox(label="Title_prediction"),
gr.outputs.Textbox(label="Title_confidence_score"),
gr.outputs.Textbox(label="Content_prediction"),
gr.outputs.Textbox(label="Content_confidence_score"),
gr.outputs.Textbox(label="Description").style(show_copy_button=True),
gr.outputs.Textbox(label="Text_prediction_score"),
gr.outputs.Textbox(label="Text_confidence_score"),
gr.outputs.Textbox(label="per word classification").style(show_copy_button=True),
],
)
demo.launch()