from transformers.pipelines.image_segmentation import Predictions from transformers import DistilBertForSequenceClassification, DistilBertTokenizer import unidecode, re, unicodedata from bs4 import BeautifulSoup from urllib.request import urlopen from urllib.parse import urlparse from sklearn.metrics import confusion_matrix, accuracy_score import torch.nn.functional as F import gradio as gr import torch import nltk def check_by_url(txt_url): parsed_url = urlparse(txt_url) url = (f"{parsed_url.scheme}://{parsed_url.netloc}{parsed_url.path.rsplit('/', 1)[0]}/") print(url) new_data = [] page = urlopen(url=url).read().decode("utf-8") soup = BeautifulSoup(page, "html.parser") title = soup.find("title").get_text() # remove punctuations from title def remove_punctuation(title): punctuationfree = "".join([i for i in title if i not in string.punctuation]) return punctuationfree css_class_to_remove = ("dp-highlighter") # Replace with the CSS class you want to remove # Find
tags with the specified CSS class and remove their content div_tags = soup.find_all(["code", "pre"]) for div_tag in div_tags: div_tag.clear() div_tags = soup.find_all("div", class_=css_class_to_remove) for div_tag in div_tags: div_tag.clear() # Fetch content of remaining tags content_with_style = "" p_tags_with_style = soup.find_all("p", style=True) for p_tag in p_tags_with_style: p_content = re.sub(r"\n", "", p_tag.get_text()) content_with_style += p_content # Fetch content of

tags without style content_without_style = "" p_tags_without_style = soup.find_all("p", style=False) for p_tag in p_tags_without_style: p_content = re.sub(r"\n", "", p_tag.get_text()) content_without_style += p_content # Replace Unicode characters in the content and remove duplicates normalized_content_with_style = re.sub(r"\s+", " ", content_with_style) # Remove extra spaces normalized_content_with_style = normalized_content_with_style.replace("\r", "") # Replace '\r' characters normalized_content_with_style = unicodedata.normalize("NFKD", normalized_content_with_style) normalized_content_with_style = unidecode.unidecode(normalized_content_with_style) normalized_content_without_style = re.sub(r"\s+", " ", content_without_style) # Remove extra spaces normalized_content_without_style = normalized_content_without_style.replace("\r", "") # Replace '\r' characters normalized_content_without_style = unicodedata.normalize("NFKD", normalized_content_without_style) normalized_content_without_style = unidecode.unidecode(normalized_content_without_style) normalized_content_with_style += normalized_content_without_style new_data = {"title": title, "content": normalized_content_with_style} # return new_data model = DistilBertForSequenceClassification.from_pretrained(".") tokenizer = DistilBertTokenizer.from_pretrained(".") label_mapping = {1: "SFW", 0: "NSFW"} test_encodings = tokenizer.encode_plus( title, truncation=True, padding=True, max_length=512, return_tensors="pt" ) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") test_input_ids = test_encodings["input_ids"].to(device) test_attention_mask = test_encodings["attention_mask"].to(device) with torch.no_grad(): model = model.to(device) model.eval() outputs = model(test_input_ids, attention_mask=test_attention_mask) logits = outputs.logits predicted_labels = torch.argmax(logits, dim=1) probabilities = F.softmax(logits, dim=1) confidence_score_title = torch.max(probabilities, dim=1).values.tolist() predicted_label_title = label_mapping[predicted_labels.item()] test_encodings = tokenizer.encode_plus( normalized_content_with_style, truncation=True, padding=True, max_length=512, return_tensors="pt", ) test_input_ids = test_encodings["input_ids"].to(device) test_attention_mask = test_encodings["attention_mask"].to(device) with torch.no_grad(): outputs = model(test_input_ids, attention_mask=test_attention_mask) logits = outputs.logits predicted_labels = torch.argmax(logits, dim=1) probabilities = F.softmax(logits, dim=1) confidence_scores_content = torch.max(probabilities, dim=1).values.tolist() predicted_label_content = label_mapping[predicted_labels.item()] return ( predicted_label_title, confidence_score_title, predicted_label_content, confidence_scores_content, new_data, #new1, ) label_mapping = {1: "SFW", 0: "NSFW"} # 1:True 0:false def predict_2(txt_url, normalized_content_with_style): ( predicted_label_title, confidence_score_title, predicted_label_content, confidence_scores_content, new_data, ) = (None, None, None, None, None) predicted_label_text, confidence_score_text = None, None if txt_url.startswith("http://") or txt_url.startswith("https://"): ( predicted_label_title, confidence_score_title, predicted_label_content, confidence_scores_content, new_data, ) = check_by_url(txt_url) elif txt_url.startswith(""): model = DistilBertForSequenceClassification.from_pretrained(".") tokenizer = DistilBertTokenizer.from_pretrained(".") test_encodings = tokenizer.encode_plus( normalized_content_with_style, truncation=True, padding=True, max_length=512, return_tensors="pt", ) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") test_input_ids = test_encodings["input_ids"].to(device) test_attention_mask = test_encodings["attention_mask"].to(device) with torch.no_grad(): model = model.to(device) model.eval() outputs = model(test_input_ids, attention_mask=test_attention_mask) logits = outputs.logits predicted_labels = torch.argmax(logits, dim=1) probabilities = F.softmax(logits, dim=1) confidence_score_text = torch.max(probabilities, dim=1).values.tolist() predicted_label_text = label_mapping[predicted_labels.item()] return ( predicted_label_title, confidence_score_title, predicted_label_content, confidence_scores_content, new_data, predicted_label_text, confidence_score_text, #new, ) def word_by_word(txt_url, normalized_content_with_style): if txt_url.startswith("http://") or txt_url.startswith("https://") or txt_url.startswith(""): ( predicted_label_title, confidence_score_title, predicted_label_content, confidence_scores_content, new_data, predicted_label_text, confidence_score_text, ) = predict_2(txt_url, normalized_content_with_style) model = DistilBertForSequenceClassification.from_pretrained(".") tokenizer = DistilBertTokenizer.from_pretrained(".") device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model = model.to(device) model.eval() new_word={} content_words =[] words_2 =[] if predicted_label_content=="NSFW" or predicted_label_text=="NSFW": if txt_url.startswith("http://") or txt_url.startswith("https://"): content_words = new_data['content'].split() else: words_2 = normalized_content_with_style.split() results = [] for word in content_words or words_2 : encoding = tokenizer.encode_plus( word, truncation=True, padding=True, max_length=512, return_tensors="pt" ) input_ids = encoding["input_ids"].to(device) attention_mask = encoding["attention_mask"].to(device) with torch.no_grad(): outputs = model(input_ids, attention_mask=attention_mask) logits = outputs.logits probabilities = F.softmax(logits, dim=1) predicted_label = torch.argmax(logits, dim=1).item() #label_mapping = {1: "SFW", 0: "NSFW"} # 1:True 0:False predicted_label_word = label_mapping[predicted_label] confidence_score_word = torch.max(probabilities, dim=1).values.item() #new_word={} if predicted_label_word=="NSFW": result = {"Word": word, "Label": predicted_label_word, "Confidence": confidence_score_word} results.append(result) new_word = json.dumps(results) return( predicted_label_title, confidence_score_title, predicted_label_content, confidence_scores_content, new_data, predicted_label_text, confidence_score_text, new_word, ) demo = gr.Interface( fn=word_by_word, inputs=[ gr.inputs.Textbox(label="URL", placeholder="Enter URL"), gr.inputs.Textbox(label="Text", placeholder="Enter Text"), ], outputs=[ gr.outputs.Textbox(label="Title_prediction"), gr.outputs.Textbox(label="Title_confidence_score"), gr.outputs.Textbox(label="Content_prediction"), gr.outputs.Textbox(label="Content_confidence_score"), gr.outputs.Textbox(label="Description").style(show_copy_button=True), gr.outputs.Textbox(label="Text_prediction_score"), gr.outputs.Textbox(label="Text_confidence_score"), gr.outputs.Textbox(label="per word classification").style(show_copy_button=True), ], ) demo.launch()