Spaces:
Runtime error
Runtime error
Update app.py
Browse filesadding a feature of :- per word classification
app.py
CHANGED
|
@@ -65,8 +65,8 @@ def check_by_url(txt_url):
|
|
| 65 |
new_data = {"title": title, "content": normalized_content_with_style}
|
| 66 |
# return new_data
|
| 67 |
|
| 68 |
-
model = DistilBertForSequenceClassification.from_pretrained("
|
| 69 |
-
tokenizer = DistilBertTokenizer.from_pretrained("
|
| 70 |
|
| 71 |
label_mapping = {1: "SFW", 0: "NSFW"}
|
| 72 |
test_encodings = tokenizer.encode_plus(
|
|
@@ -137,8 +137,8 @@ def predict_2(txt_url, normalized_content_with_style):
|
|
| 137 |
new_data,
|
| 138 |
) = check_by_url(txt_url)
|
| 139 |
elif txt_url.startswith(""):
|
| 140 |
-
model = DistilBertForSequenceClassification.from_pretrained("
|
| 141 |
-
tokenizer = DistilBertTokenizer.from_pretrained("
|
| 142 |
|
| 143 |
test_encodings = tokenizer.encode_plus(
|
| 144 |
normalized_content_with_style,
|
|
@@ -185,8 +185,8 @@ def word_by_word(txt_url, normalized_content_with_style):
|
|
| 185 |
confidence_score_text,
|
| 186 |
) = predict_2(txt_url, normalized_content_with_style)
|
| 187 |
|
| 188 |
-
model = DistilBertForSequenceClassification.from_pretrained("
|
| 189 |
-
tokenizer = DistilBertTokenizer.from_pretrained("
|
| 190 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 191 |
model = model.to(device)
|
| 192 |
model.eval()
|
|
@@ -251,7 +251,7 @@ demo = gr.Interface(
|
|
| 251 |
gr.outputs.Textbox(label="Description").style(show_copy_button=True),
|
| 252 |
gr.outputs.Textbox(label="Text_prediction_score"),
|
| 253 |
gr.outputs.Textbox(label="Text_confidence_score"),
|
| 254 |
-
gr.outputs.Textbox(label="word
|
| 255 |
],
|
| 256 |
)
|
| 257 |
|
|
|
|
| 65 |
new_data = {"title": title, "content": normalized_content_with_style}
|
| 66 |
# return new_data
|
| 67 |
|
| 68 |
+
model = DistilBertForSequenceClassification.from_pretrained(".")
|
| 69 |
+
tokenizer = DistilBertTokenizer.from_pretrained(".")
|
| 70 |
|
| 71 |
label_mapping = {1: "SFW", 0: "NSFW"}
|
| 72 |
test_encodings = tokenizer.encode_plus(
|
|
|
|
| 137 |
new_data,
|
| 138 |
) = check_by_url(txt_url)
|
| 139 |
elif txt_url.startswith(""):
|
| 140 |
+
model = DistilBertForSequenceClassification.from_pretrained(".")
|
| 141 |
+
tokenizer = DistilBertTokenizer.from_pretrained(".")
|
| 142 |
|
| 143 |
test_encodings = tokenizer.encode_plus(
|
| 144 |
normalized_content_with_style,
|
|
|
|
| 185 |
confidence_score_text,
|
| 186 |
) = predict_2(txt_url, normalized_content_with_style)
|
| 187 |
|
| 188 |
+
model = DistilBertForSequenceClassification.from_pretrained(".")
|
| 189 |
+
tokenizer = DistilBertTokenizer.from_pretrained(".")
|
| 190 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 191 |
model = model.to(device)
|
| 192 |
model.eval()
|
|
|
|
| 251 |
gr.outputs.Textbox(label="Description").style(show_copy_button=True),
|
| 252 |
gr.outputs.Textbox(label="Text_prediction_score"),
|
| 253 |
gr.outputs.Textbox(label="Text_confidence_score"),
|
| 254 |
+
gr.outputs.Textbox(label="per word classification").style(show_copy_button=True),
|
| 255 |
],
|
| 256 |
)
|
| 257 |
|