File size: 9,693 Bytes
22cebd2
 
 
 
60eea81
22cebd2
 
 
 
 
60eea81
 
 
 
 
 
5952a1b
 
 
 
 
6d5706b
22cebd2
6cadba0
5952a1b
6cadba0
22cebd2
 
 
 
 
 
 
 
cb10045
22cebd2
 
 
 
 
cb10045
22cebd2
 
60eea81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22cebd2
60eea81
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22cebd2
 
 
 
 
 
 
 
 
f29faa9
 
22cebd2
 
 
 
 
 
 
9a79b79
22cebd2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9a79b79
 
 
844bf31
22cebd2
c165e2e
 
 
 
 
 
 
 
 
 
 
 
 
 
949197a
 
9465a08
eecd30c
c165e2e
fd4581c
 
 
 
eecd30c
 
 
 
 
 
22cebd2
 
fd4581c
 
 
 
22cebd2
eecd30c
22cebd2
 
60eea81
22cebd2
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
import gradio as gr
from huggingface_hub import InferenceClient
import torch
from transformers import pipeline
from prometheus_client import start_http_server, Counter, Summary

from typing import Iterable
from gradio.themes.base import Base
from gradio.themes.utils import colors, fonts, sizes

# Prometheus metrics
REQUEST_COUNTER = Counter('app_requests_total', 'Total number of requests')
SUCCESSFUL_REQUESTS = Counter('app_successful_requests_total', 'Total number of successful requests')
FAILED_REQUESTS = Counter('app_failed_requests_total', 'Total number of failed requests')
REQUEST_DURATION = Summary('app_request_duration_seconds', 'Time spent processing request')

# import os
# from dotenv import load_dotenv
# load_dotenv()
#
# HF_ACCESS = os.getenv("HF_ACCESS")

# Inference client setup
client = InferenceClient(model="mistralai/Mistral-Small-Instruct-2409",
                         # token=HF_ACCESS
                         )
pipe = pipeline("text-generation", "microsoft/Phi-3-mini-4k-instruct", torch_dtype=torch.bfloat16, device_map="auto")

# Global flag to handle cancellation
stop_inference = False

def respond(
    message,
    history: list[tuple[str, str]],
    system_message="You are a friendly and playful cat. Answer all user queries clearly and engagingly",
    max_tokens=512,
    temperature=0.7,
    top_p=0.95,
    use_local_model=False,
):
    system_message += " You also love puns and add 'meow' at the end of every response."
    global stop_inference
    stop_inference = False  # Reset cancellation flag
    REQUEST_COUNTER.inc()  # Increment request counter
    request_timer = REQUEST_DURATION.time()  # Start timing the request

    try:
        # Initialize history if it's None
        if history is None:
            history = []

        if use_local_model:
            # local inference
            messages = [{"role": "system", "content": system_message}]
            for val in history:
                if val[0]:
                    messages.append({"role": "user", "content": val[0]})
                if val[1]:
                    messages.append({"role": "assistant", "content": val[1]})
            messages.append({"role": "user", "content": message})

            response = ""
            for output in pipe(
                messages,
                max_new_tokens=max_tokens,
                temperature=temperature,
                do_sample=True,
                top_p=top_p,
            ):
                if stop_inference:
                    response = "Inference cancelled."
                    yield history + [(message, response)]
                    return
                token = output['generated_text'][-1]['content']
                response += token
                yield history + [(message, response)]  # Yield history + new response

        else:
            # API-based inference
            messages = [{"role": "system", "content": system_message}]
            for val in history:
                if val[0]:
                    messages.append({"role": "user", "content": val[0]})
                if val[1]:
                    messages.append({"role": "assistant", "content": val[1]})
            messages.append({"role": "user", "content": message})

            response = ""
            for message_chunk in client.chat_completion(
                messages,
                max_tokens=max_tokens,
                stream=True,
                temperature=temperature,
                top_p=top_p,
            ):
                if stop_inference:
                    response = "Inference cancelled."
                    yield history + [(message, response)]
                    return
                if stop_inference:
                    response = "Inference cancelled."
                    break
                token = message_chunk.choices[0].delta.content
                response += token
                yield history + [(message, response)]  # Yield history + new response
        SUCCESSFUL_REQUESTS.inc()  # Increment successful request counter
    except Exception as e:
        FAILED_REQUESTS.inc()  # Increment failed request counter
        yield history + [(message, f"Error: {str(e)}")]
    finally:
        request_timer.observe_duration()  # Stop timing the request


def cancel_inference():
    global stop_inference
    stop_inference = True

# Custom CSS for a fancy look
custom_css = """
#main-container {
    background-color: #FFC0CB;
    background-image: url('file=image.ipg');
    font-family: 'Arial', sans-serif;
}

.gradio-container {
    max-width: 700px;
    margin: 0 auto;
    padding: 20px;
    background: #FFC0CB;
    box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
    border-radius: 10px;
}

.gr-button {
    background-color: #4CAF50;
    color: white;
    border: none;
    border-radius: 5px;
    padding: 10px 20px;
    cursor: pointer;
    transition: background-color 0.3s ease;
}

.gr-button:hover {
    background-color: #45a049;
}

.gr-slider input {
    color: #4CAF50;
}

.gr-chat {
    font-size: 16px;
}

#title {
    text-align: center;
    font-size: 2em;
    margin-bottom: 20px;
    color: #333;
}
"""

class UI_design(Base):
    def __init__(
        self,
        *,
        primary_hue: colors.Color | str = colors.emerald,
        secondary_hue: colors.Color | str = colors.blue,
        neutral_hue: colors.Color | str = colors.blue,
        spacing_size: sizes.Size | str = sizes.spacing_md,
        radius_size: sizes.Size | str = sizes.radius_md,
        text_size: sizes.Size | str = sizes.text_lg,
        font: fonts.Font      
        | str
        | Iterable[fonts.Font | str] = (
            fonts.GoogleFont("Quicksand"),
            "ui-sans-serif",
            "sans-serif",
        ),
        font_mono: fonts.Font
        | str
        | Iterable[fonts.Font | str] = (
            fonts.GoogleFont("IBM Plex Mono"),
            "ui-monospace",
            "monospace",
        ),
    ):
        super().__init__(
            primary_hue=primary_hue,
            secondary_hue=secondary_hue,
            neutral_hue=neutral_hue,
            spacing_size=spacing_size,
            radius_size=radius_size,
            text_size=text_size,
            font=font,
            font_mono=font_mono,
        )
        super().set(
            body_background_fill="repeating-linear-gradient(45deg, *primary_200, *primary_200 10px, *primary_50 10px, *primary_50 20px)",
            body_background_fill_dark="repeating-linear-gradient(45deg, *primary_800, *primary_800 10px, *primary_900 10px, *primary_900 20px)",
            button_primary_background_fill="linear-gradient(90deg, *primary_300, *secondary_400)",
            button_primary_background_fill_hover="linear-gradient(90deg, *primary_200, *secondary_300)",
            button_primary_text_color="white",
            button_primary_background_fill_dark="linear-gradient(90deg, *primary_600, *secondary_800)",
            slider_color="*secondary_300",
            slider_color_dark="*secondary_600",
            block_title_text_weight="600",
            block_border_width="3px",
            block_shadow="*shadow_drop_lg",
            button_shadow="*shadow_drop_lg",
            button_large_padding="32px",
        )

ui_design = UI_design()

# Define the interface
# with gr.Blocks(theme=ui_design) as demo:
with gr.Blocks(css=custom_css) as demo:
    gr.Markdown("<h1 style='text-align: center;'> 😸 Meowthamatical AI Chatbot 😸</h1>")
    gr.Markdown(" Welcome to the Cat & Math Chatbot! Whether you're here to sharpen your math skills or just enjoy some cat-themed fun, we're excited to make learning a little more pawsome!!")

    # with gr.Row():
    #     with gr.Column():
    #         with gr.Tabs() as input_tabs:
    #             with gr.Tab("Sketch"):
    #                 input_sketchpad = gr.Sketchpad(type="pil", label="Sketch", layers=False)
    #
    #         input_text = gr.Textbox(label="input your question")
    #
    #         with gr.Row():
    #             # with gr.Column():
    #             #     clear_btn = gr.ClearButton(
    #             #         [input_sketchpad, input_text])
    #             with gr.Column():
    #                 submit_btn = gr.Button("Submit", variant="primary")

    with gr.Row():
        system_message = gr.Textbox(value="You are a friendly and playful cat who loves help users learn math.", label="System message", interactive=True)
        use_local_model = gr.Checkbox(label="Use Local Model", value=False)
        # button_1 = gr.Button("Submit", variant="primary")
    with gr.Row():
        max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens")
        temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
        top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)")

    chat_history = gr.Chatbot(label="Chat")

    user_input = gr.Textbox(show_label=False, placeholder="Type your message here...")

    cancel_button = gr.Button("Cancel Inference", variant="danger")

    # Adjusted to ensure history is maintained and passed correctly
    user_input.submit(respond, [user_input, chat_history, system_message, max_tokens, temperature, top_p, use_local_model], chat_history)
    # user_input.submit(respond,
    #                   [user_input, chat_history, system_message, 512, 0.8, 0.95, use_local_model],
    #                   chat_history)

    cancel_button.click(cancel_inference)

if __name__ == "__main__":
    start_http_server(8000)  # Expose metrics on port 8000
    demo.launch(share=False)  # Remove share=True because it's not supported on HF Spaces