File size: 6,466 Bytes
eba8a37
 
 
 
95be02e
eba8a37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
473e687
eba8a37
 
 
473e687
eba8a37
 
 
 
 
 
 
 
 
 
fd6f269
 
5945c23
49c00c2
 
 
 
 
 
5945c23
eba8a37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
540407e
 
 
eba8a37
 
 
 
 
 
6738f41
 
 
 
 
 
eba8a37
 
 
 
49c00c2
eba8a37
5945c23
eba8a37
 
95be02e
 
 
 
 
eba8a37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5945c23
eba8a37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49c00c2
eba8a37
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
11def42
eba8a37
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import gradio as gr
import pandas as pd

from dataset import get_dataframe
from markdown import COLUMN_DESC_MARKDOWN, GUIDELINES, PANEL_MARKDOWN

df = get_dataframe()


def filter_dataframe(dataframe, eval_dataset, cont_source, checkboxes):
    """
    Filter the dataframe based on the provided evaluation dataset, contaminated source, and checkboxes.

    Args:
        dataframe (pandas.DataFrame): The input dataframe to filter.
        eval_dataset (str): The evaluation dataset to filter by.
        cont_source (str): The contaminated source to filter by.
        checkboxes (list): The checkboxes to filter by.

    Returns:
        pandas.DataFrame: The filtered dataframe.
    """
    if isinstance(eval_dataset, str):
        dataframe = dataframe[
            dataframe["Evaluation Dataset"].str.contains(f"(?i){eval_dataset}")
        ]
    if isinstance(cont_source, str):
        dataframe = dataframe[
            dataframe["Contaminated Source"].str.contains(f"(?i){cont_source}")
        ]
    if isinstance(checkboxes, list) and "Exclude model-based evidences" in checkboxes:
        dataframe = dataframe[dataframe["Approach"] != "model-based"]
    if isinstance(checkboxes, list) and "Show only contaminated" in checkboxes:
        dataframe = dataframe[
            (dataframe["Train Split"] > 0.0)
            | (dataframe["Development Split"] > 0.0)
            | (dataframe["Test Split"] > 0.0)
        ]

    dataframe = dataframe.sort_values("Test Split", ascending=False)

    return dataframe.style.format(
        {
            "Train Split": "{:.1%}",
            "Development Split": "{:.1%}",
            "Test Split": "{:.1%}",
        },
        na_rep="Unknown",
    )


def filter_dataframe_corpus(*args, **kwargs) -> pd.DataFrame:
    """
    Filter the dataframe for corpus contamination.

    Returns:
        pandas.DataFrame: The filtered dataframe for corpus contamination.
    """
    # Get rows in which the column Model or corpus is equal to dataset
    filtered_df = df[df["Model or corpus"] == "corpus"]
    filtered_df = filtered_df.drop(columns=["Model or corpus"])
    return filter_dataframe(filtered_df, *args, **kwargs)


def filter_dataframe_model(*args, **kwargs) -> pd.DataFrame:
    """
    Filter the dataframe for model contamination.

    Returns:
        pandas.DataFrame: The filtered dataframe for model contamination.
    """
    # Get rows in which the column Model or corpus is equal to dataset
    filtered_df = df[df["Model or corpus"] == "model"]
    filtered_df = filtered_df.drop(columns=["Model or corpus"])
    return filter_dataframe(filtered_df, *args, **kwargs)


theme = gr.themes.Soft(
    primary_hue="emerald",
    secondary_hue="cyan",
    text_size="md",
    spacing_size="lg",
    font=[
        gr.themes.GoogleFont("Poppins"),
        gr.themes.GoogleFont("Poppins"),
        gr.themes.GoogleFont("Poppins"),
        gr.themes.GoogleFont("Poppins"),
    ],
).set(
    block_background_fill="*neutral_50",
    block_background_fill_dark="*neutral_950",
    section_header_text_size="*text_lg",
    section_header_text_weight="800",
)


with gr.Blocks(
    theme=theme,
    title="πŸ’¨ Data Contamination Database",
    analytics_enabled=False,
    fill_height=True,
) as demo:
    gr.Markdown(PANEL_MARKDOWN)
    with gr.Accordion("Column descriptions (See details)", open=False) as accordion:
        gr.Markdown(COLUMN_DESC_MARKDOWN)

    gr.Markdown(f"### Total contributions: {len(df)}")
        
    with gr.Tab("Corpus contamination") as tab_corpus:
        with gr.Row(variant="compact"):
            with gr.Column():
                eval_dataset_corpus = gr.Textbox(
                    placeholder="Evaluation dataset",
                    label="Evaluation dataset",
                    value="",
                )
                cont_corpora = gr.Textbox(
                    placeholder="Pre-training corpora",
                    label="Pre-training corpora",
                    value="",
                )
            with gr.Column():
                checkboxes_corpus = gr.CheckboxGroup(
                    ["Exclude model-based evidences", "Show only contaminated"],
                    label="Search options",
                    value=[],
                )

        filter_corpus_btn = gr.Button("Filter")

        corpus_dataframe = gr.DataFrame(
            value=filter_dataframe_corpus(
                eval_dataset_corpus, cont_corpora, checkboxes_corpus
            ),
            headers=df.columns.to_list(),
            datatype=[
                "markdown",
                "markdown",
                "number",
                "number",
                "number",
                "str",
                "markdown",
                "markdown",
            ],
        )

    with gr.Tab("Model contamination") as tab_model:
        with gr.Row(variant="compact"):
            with gr.Column():
                eval_dataset_model = gr.Textbox(
                    placeholder="Evaluation dataset",
                    label="Evaluation dataset",
                    value="",
                )
                cont_model = gr.Textbox(
                    placeholder="Model", label="Pre-trained model", value=""
                )
            with gr.Column():
                checkboxes_model = gr.CheckboxGroup(
                    ["Exclude model-based evidences", "Show only contaminated"],
                    label="Search options",
                    value=[],
                )

        filter_model_btn = gr.Button("Filter")

        model_dataframe = gr.DataFrame(
            value=filter_dataframe_model(
                eval_dataset_model, cont_model, checkboxes_model
            ),
            headers=df.columns.to_list(),
            datatype=[
                "markdown",
                "markdown",
                "number",
                "number",
                "number",
                "str",
                "markdown",
                "markdown",
            ],
        )

    filter_corpus_btn.click(
        filter_dataframe_corpus,
        inputs=[eval_dataset_corpus, cont_corpora, checkboxes_corpus],
        outputs=corpus_dataframe,
    )
    filter_model_btn.click(
        filter_dataframe_model,
        inputs=[eval_dataset_model, cont_model, checkboxes_model],
        outputs=model_dataframe,
    )

    with gr.Tab("Contribution Guidelines") as tab_guidelines:
        gr.Markdown(GUIDELINES)


demo.launch()