File size: 9,040 Bytes
c58daf7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
import os
import csv
import torch
import random
import numpy as np
from torch.autograd import Variable
from model.tf_model import subsequent_mask
from torch.utils.data import Dataset


class Batch:
    "Object for holding a batch of data with mask during training."

    def __init__(self, src, trg=None, ys=None, pad=0):
        self.src = src
        self.ys = ys
        self.src_len = src[:, 0, :]
        self.src_mask = (self.src_len != pad).unsqueeze(-2)
        if trg is not None:
            # ------for EEG-------
            self.trg = trg[:, :, :-1]
            self.trg_len = trg[:, 0, :]
            self.trg_x = self.trg_len[:, :-1]
            self.trg_y = self.trg_len[:, 1:]
            # ------for NLP-------
            #self.trg = trg[:, :-1]
            #self.trg_x = trg[:, :-1]
            #self.trg_y = trg[:, 1:]
            self.trg_mask = \
                self.make_std_mask(self.trg_x, pad)
            self.ntokens = (self.trg_y != pad).data.sum()


    @staticmethod
    def make_std_mask(tgt, pad):
        "Create a mask to hide padding and future words."
        tgt_mask = (tgt != pad).unsqueeze(-2)
        tgt_mask = tgt_mask & Variable(
            subsequent_mask(tgt.size(-1)).type_as(tgt_mask.data))
        return tgt_mask


def data_gen(V, batch, nbatches):
    "Generate random data for a src-tgt copy task."
    for i in range(nbatches):
        data = torch.from_numpy(np.random.randint(1, V, size=(batch, 10)))
        data[:, 0] = 1
        src = Variable(data, requires_grad=False)
        tgt = Variable(data, requires_grad=False)
        yield Batch(src, tgt, 0)

def data_load(train_loader):
    print("data_load:", len(train_loader))
    for i, (attr, target, ys) in enumerate(train_loader):
        #src = Variable(attr, requires_grad=False)
        #tgt = Variable(target, requires_grad=False)
        #print("data_load1:", attr.shape)
        #print("data_load2:", target.shape)
        src = attr.cuda()
        tgt = target.cuda()
        ys = ys.cuda()
        yield Batch(src, tgt, ys, 0)


class preDataset(Dataset):
    def __init__(self, mode, train_len=870300, block_num=1):
        self.sample_rate = 256
        self.lenth = 870300 #train_len
        self.lenthtest = 3600
        self.lenthval = 3500
        self.mode = mode
        self.block_num = block_num

    def __len__(self):
        if self.mode == 2:
            return self.lenthval
        elif self.mode == 1:
            return self.lenthtest
        else:
            return self.lenth

    def __getitem__(self, idx):
        '''
        :param idx:
        :return:
        '''
        data_mode = ["Brain", "ChannelNoise", "Eye", "Heart", "LineNoise", "Muscle", "Other"]
        ## step 1 locate idx into dataset
        dataset = ["Hyperscanning_navigation", "Hyperscanning_slapjack", "Lane_keeping"]

        if idx < 249816:
            now_idx = idx
            dataloc = 0
        elif idx >= 249816 and idx < 506365:
            now_idx = idx - 249816
            dataloc = 1
        elif idx >= 506365:
            now_idx = idx - 506365
            dataloc = 2

        ## step 2 read data
        folder_name = './MetaPreTrain/' + dataset[dataloc] + '/3_ICA/'
        allFileList = os.listdir(folder_name)
        file_name1 = folder_name + allFileList[now_idx]
        #print("preDataset1: ", allFileList[now_idx])
        ## get after 4 sec data
        string_array = allFileList[now_idx]
        parts = string_array[0].split('_')
        numeric_part = parts[-1].split('.')[0]
        new_numeric_part = str(int(numeric_part) + 4)
        parts[-1] = new_numeric_part + '.csv'
        string_array = '_'.join(parts)
        file_name2 = folder_name + string_array
        #print("preDataset2: ", string_array)
        try:
            data_nosie = self.read_train_data(file_name1)
            data_clean = self.read_train_data(file_name2)
        except:
            data_nosie = self.read_train_data(file_name1)
            data_clean = data_nosie

        ## step 3 signal normalize
        max_num = np.max(data_nosie)
        data_avg = np.average(data_nosie)
        data_std = np.std(data_nosie)

        if int(data_std) != 0:
            target = np.array((data_clean - data_avg) / data_std).astype(np.float64)
            attr   = np.array((data_nosie - data_avg) / data_std).astype(np.float64)
        else:
            target = np.array(data_clean - data_avg).astype(np.float64)
            attr   = np.array(data_nosie - data_avg).astype(np.float64)

        ## step 4 deep copy & return
        #target = target.copy()
        target = torch.FloatTensor(target)

        #attr = attr.copy()
        attr = torch.FloatTensor(attr)

        ys = torch.ones(30, 1023).fill_(1).type_as(attr)

        return attr, target, ys

    def read_train_data(self, file_name):
        with open(file_name, 'r', newline='') as f:
            lines = csv.reader(f)
            data = []
            for line in lines:
                data.append(line)

        new_data = np.array(data).astype(np.float64)

        return new_data


class myDataset(Dataset):
    def __init__(self, mode, train_len=0, block_num=1):
        self.sample_rate = 256
        self.lenth = train_len
        self.lenthtest = 3600
        self.lenthval = 3500
        self.mode = mode
        self.block_num = block_num

    def __len__(self):
        if self.mode == 2:
            return self.lenthval
        elif self.mode == 1:
            return self.lenthtest
        else:
            return self.lenth

    def __getitem__(self, idx):
        '''
        :param idx:
        :return:
        '''
        data_mode = ["Brain", "ChannelNoise", "Eye", "Heart", "LineNoise", "Muscle", "Other"]

        if self.mode == 2:
            allFileList = os.listdir("./Real_EEG/val/Brain/")
            file_name = './Real_EEG/val/Brain/' + allFileList[idx]
            data_clean = self.read_train_data(file_name)
            for i in range(7):
                file_name = './Real_EEG/val/' + data_mode[random.randint(0, 6)] + '/' + allFileList[idx]
                if os.path.isfile(file_name):
                    data_nosie = self.read_train_data(file_name)
                    break
                else:
                    data_nosie = data_clean
        elif self.mode == 1:
            allFileList = os.listdir("./Real_EEG/test/Brain/")
            file_name = './Real_EEG/test/Brain/' + allFileList[idx]
            data_clean = self.read_train_data(file_name)
            for i in range(7):
                file_name = './Real_EEG/test/' + data_mode[random.randint(0, 6)] + '/' + allFileList[idx]
                if os.path.isfile(file_name):
                    data_nosie = self.read_train_data(file_name)
                    break
                else:
                    data_nosie = data_clean
        else:
            allFileList = os.listdir("./Real_EEG/train/Brain/")
            file_name = './Real_EEG/train/Brain/' + allFileList[idx]
            #print("dataloader: ", file_name)
            data_clean = self.read_train_data(file_name)
            for i in range(7):
                file_name = './Real_EEG/train/' + data_mode[random.randint(0, 6)] + '/' + allFileList[idx]
                if os.path.isfile(file_name):
                    data_nosie = self.read_train_data(file_name)
                    break
                else:
                    data_nosie = data_clean
        #print(file_name)



        #print("data_set", noise.shape)

        max_num = np.max(data_nosie)
        data_avg = np.average(data_nosie)
        data_std = np.std(data_nosie)
        #max_num = 100
        #print("max_num: ", max_num)

        #target = np.array(data / max_num).astype(np.float)
        if int(data_std) != 0:
            target = np.array((data_clean - data_avg) / data_std).astype(np.float64)
            attr   = np.array((data_nosie - data_avg) / data_std).astype(np.float64)
        else:
            target = np.array(data_clean - data_avg).astype(np.float64)
            attr   = np.array(data_nosie - data_avg).astype(np.float64)


        ## step 4 deep copy & return
        # target = target.copy()
        target = torch.FloatTensor(target)

        # attr = attr.copy()
        attr = torch.FloatTensor(attr)

        ys = torch.ones(30, 1023).fill_(1).type_as(attr)

        return attr, target, ys

    def read_train_data(self, file_name):
        with open(file_name, 'r', newline='') as f:
            lines = csv.reader(f)
            data = []
            for line in lines:
                data.append(line)

        new_data = np.array(data).astype(np.float64)

        ''' for training 19 channels
        row = np.array([0,1,2,3,4,5,6,12,13,14,15,16,22,23,24,25,26,27,29])
        new_data = []
        for i in range(19):
            #print(i, row[i])
            #print(data[row[i]].shape)
            new_data.append(data[row[i]])        
            new_data = np.array(new_data).astype(np.float)
        '''

        # data = data.T
        return new_data