File size: 2,386 Bytes
af7ac2b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
import matplotlib
matplotlib.use("Agg")
import matplotlib.pylab as plt
import numpy as np


def save_figure_to_numpy(fig):
    # save it to a numpy array.
    data = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
    data = data.reshape(fig.canvas.get_width_height()[::-1] + (3,))
    return data


def plot_alignment_to_numpy(alignment, info=None):
    fig, ax = plt.subplots(figsize=(6, 4))
    im = ax.imshow(alignment, aspect='auto', origin='lower',
                   interpolation='none')
    fig.colorbar(im, ax=ax)
    xlabel = 'Decoder timestep'
    if info is not None:
        xlabel += '\n\n' + info
    plt.xlabel(xlabel)
    plt.ylabel('Encoder timestep')
    plt.tight_layout()

    fig.canvas.draw()
    data = save_figure_to_numpy(fig)
    plt.close()
    data = data.transpose(2, 0, 1)
    return data


def plot_gst_scores_to_numpy(gst_scores, info=None):
    fig, ax = plt.subplots(figsize=(6, 4))
    im = ax.imshow(gst_scores, aspect='auto', origin='lower',
                   interpolation='none')
    fig.colorbar(im, ax=ax)
    xlabel = 'Validation samples'
    if info is not None:
        xlabel += '\n\n' + info
    plt.xlabel(xlabel)
    plt.ylabel('Style Tokens')
    plt.tight_layout()

    fig.canvas.draw()
    data = save_figure_to_numpy(fig)
    plt.close()
    data = data.transpose(2, 0, 1)
    return data


def plot_spectrogram_to_numpy(spectrogram):
    fig, ax = plt.subplots(figsize=(12, 3))
    im = ax.imshow(spectrogram, aspect="auto", origin="lower",
                   interpolation='none')
    plt.colorbar(im, ax=ax)
    plt.xlabel("Frames")
    plt.ylabel("Channels")
    plt.tight_layout()

    fig.canvas.draw()
    data = save_figure_to_numpy(fig)
    plt.close()
    data = data.transpose(2, 0, 1)
    return data


def plot_gate_outputs_to_numpy(gate_targets, gate_outputs):
    fig, ax = plt.subplots(figsize=(12, 3))
    ax.scatter(range(len(gate_targets)), gate_targets, alpha=0.5,
               color='green', marker='+', s=1, label='target')
    ax.scatter(range(len(gate_outputs)), gate_outputs, alpha=0.5,
               color='red', marker='.', s=1, label='predicted')

    plt.xlabel("Frames (Green target, Red predicted)")
    plt.ylabel("Gate State")
    plt.tight_layout()

    fig.canvas.draw()
    data = save_figure_to_numpy(fig)
    plt.close()
    data = data.transpose(2, 0, 1)
    return data