Spaces:
Running
Running
File size: 3,450 Bytes
da4611f 7af13f4 da4611f 48193db 7af13f4 5136fe5 48193db 7af13f4 48193db 7af13f4 da4611f 8553418 7af13f4 19964c7 7af13f4 d3d7595 7af13f4 06b445f 7af13f4 48193db 01631c2 48193db 19964c7 06b445f 7af13f4 da4611f 7af13f4 da4611f 7af13f4 d3d7595 7af13f4 5136fe5 7af13f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 |
import sklearn
import gradio as gr
import joblib
from transformers import pipeline
import requests.exceptions
from huggingface_hub import HfApi, hf_hub_download
from huggingface_hub.repocard import metadata_load
#pipe = joblib.load("https://huggingface.co/spaces/scikit-learn/sentiment-analysis/tree/main/pipeline.pkl")
#inputs = [gr.Textbox(value = "The customer service was satisfactory.")]
#outputs = [gr.Label(label = "Sentiment")]
#title = "Sentiment Analysis"
app = gr.Blocks()
def load_agent(model_id_1, model_id_2):
"""
This function load the agent's results
"""
# Load the metrics
metadata_1 = get_metadata(model_id_1)
# Get the accuracy
results_1 = parse_metrics_accuracy(metadata_1)
# Load the metrics
metadata_2 = get_metadata(model_id_2)
# Get the accuracy
results_2 = parse_metrics_accuracy(metadata_2)
return model_id_1, results_1, model_id_2, results_2
def parse_metrics_accuracy(meta):
if "model-index" not in meta:
return None
result = meta["model-index"][0]["results"]
metrics = result[0]["metrics"]
accuracy = metrics[0]["value"]
return accuracy
def get_metadata(model_id):
"""
Get the metadata of the model repo
:param model_id:
:return: metadata
"""
try:
readme_path = hf_hub_download(model_id, filename="README.md")
metadata = metadata_load(readme_path)
print(metadata)
return metadata
except requests.exceptions.HTTPError:
return None
classifier = pipeline("text-classification", model="juliensimon/distilbert-amazon-shoe-reviews")
def predict(review):
prediction = classifier(review)
print(prediction)
stars = prediction[0]['label']
stars = (int)(stars.split('_')[1])+1
score = 100*prediction[0]['score']
return "{} {:.0f}%".format("\U00002B50"*stars, score)
with app:
gr.Markdown(
"""
# Compare Sentiment Analysis Models
Type text to predict sentiment.
""")
with gr.Row():
model1_input = gr.Textbox(label="Model 1")
model2_input = gr.Textbox(label="Model 2")
with gr.Row():
inp = gr.Textbox(label="Type text here.",placeholder="The customer service was satisfactory.")
out = gr.Textbox(label="Prediction")
btn = gr.Button("Run")
btn.click(fn=predict, inputs=inp, outputs=out)
gr.Markdown(
"""
Type two models id you want to compare or check examples below.
""")
with gr.Row():
model1_input = gr.Textbox(label="Model 1")
model2_input = gr.Textbox(label="Model 2")
with gr.Row():
app_button = gr.Button("Compare models")
with gr.Row():
with gr.Column():
model1_name = gr.Markdown()
model1_score_output = gr.Textbox(label="Sentiment")
with gr.Column():
model2_name = gr.Markdown()
model2_score_output = gr.Textbox(label="Sentiment")
app_button.click(load_agent, inputs=[model1_input, model2_input], outputs=[model1_name, model1_score_output, model2_name, model2_score_output])
examples = gr.Examples(examples=[["distilbert-base-uncased-finetuned-sst-2-english","distilbert-base-uncased-finetuned-sst-2-english"],
["distilbert-base-uncased-finetuned-sst-2-english", "distilbert-base-uncased-finetuned-sst-2-english"]],
inputs=[model1_input, model2_input])
app.launch() |