File size: 9,478 Bytes
41f2cd0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8758d05
 
 
 
 
 
 
41f2cd0
8758d05
 
 
41f2cd0
b003220
8758d05
 
 
b003220
 
8758d05
 
 
 
 
 
 
41f2cd0
b003220
 
8758d05
 
41f2cd0
8758d05
919458a
 
 
8758d05
 
919458a
8758d05
919458a
41f2cd0
02b8818
8758d05
e9a20eb
919458a
8758d05
 
 
 
 
 
 
 
 
41f2cd0
8758d05
 
 
41f2cd0
8758d05
 
 
 
 
 
 
 
 
 
 
41f2cd0
8758d05
 
 
 
41f2cd0
8758d05
 
41f2cd0
8758d05
 
 
41f2cd0
8758d05
 
41f2cd0
8758d05
 
 
41f2cd0
8758d05
 
 
 
 
919458a
 
8758d05
 
 
4de981d
 
8758d05
 
02b8818
 
 
41f2cd0
02b8818
 
 
41f2cd0
02b8818
 
 
 
 
41f2cd0
 
02b8818
 
 
41f2cd0
02b8818
 
8758d05
41f2cd0
02b8818
 
41f2cd0
02b8818
8758d05
41f2cd0
02b8818
 
41f2cd0
919458a
8758d05
919458a
02b8818
 
41f2cd0
02b8818
 
41f2cd0
02b8818
 
41f2cd0
02b8818
 
41f2cd0
02b8818
 
41f2cd0
02b8818
919458a
41f2cd0
02b8818
8758d05
919458a
41f2cd0
919458a
02b8818
41f2cd0
8758d05
919458a
8758d05
41f2cd0
8758d05
 
02b8818
e9a20eb
 
4de981d
 
8758d05
919458a
8758d05
919458a
 
8758d05
919458a
 
8758d05
 
919458a
 
8758d05
 
919458a
 
8758d05
 
 
 
 
919458a
8758d05
 
 
 
919458a
8758d05
 
 
919458a
 
 
41f2cd0
8758d05
 
 
 
 
 
 
 
 
 
 
3e9e0cc
 
 
 
8758d05
 
3e9e0cc
 
 
8758d05
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b36c2f1
 
3e9e0cc
 
8758d05
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
# %%
# -*- coding: utf-8 -*-
"""
Spyder Editor

This is a temporary script file.
"""




from numpy import arange
import xarray as xr
import highspy
from linopy import Model, EQUAL
import pandas as pd
import plotly.express as px
import streamlit as st
import sourced as src
st.set_page_config(layout="wide")
# you can create columns to better manage the flow of your page
# this command makes 3 columns of equal width
col1, col2, col3, col4 = st.columns(4)
col1.header("Data Input")
col4.header("Download Results")
# %%
with col1:
    with open('Input_Jahr_2021.xlsx', 'rb') as f:
        st.download_button('Download Excel Template', f, file_name='Input_Jahr_2021.xlsx')  # Defaults to 'application/octet-stream'

#url_excel = r'Input_Jahr_2021.xlsx'
    url_excel = st.file_uploader(label = 'Excel Upload')


if url_excel == None:
    url_excel = r'Input_Jahr_2021.xlsx'
    sets_dict, params_dict= src.load_data_from_excel(url_excel, load_from_pickle_flag = True)
    with col4:
        st.write('Running with standard data')
else:
    sets_dict, params_dict= src.load_data_from_excel(url_excel, load_from_pickle_flag = False)
    with col4:
        st.write('Running with user data')

# # %%

def timstep_aggregate(time_steps_aggregate, xr ):
    return xr.rolling( t = time_steps_aggregate).mean().sel(t = t[0::time_steps_aggregate])

#s_t_r_iRes = timstep_aggregate(6,s_t_r_iRes)



# %%
#sets_dict, params_dict= src.load_data_from_excel(url_excel,write_to_pickle_flag=True)

# %%



#sets_dict, params_dict= load_data_from_excel(url_excel, load_from_pickle_flag = False)


dt = 6
# Unpack sets_dict into the workspace
t = sets_dict['t']
i = sets_dict['i']
iSto = sets_dict['iSto']
iConv = sets_dict['iConv']
iPtG = sets_dict['iPtG']
iRes = sets_dict['iRes']
iHyRes = sets_dict['iHyRes']

# Unpack params_dict into the workspace
l_co2 = params_dict['l_co2']
p_co2 = params_dict['p_co2']

D_t = timstep_aggregate(dt,params_dict['D_t'])
eff_i = params_dict['eff_i']
c_fuel_i = params_dict['c_fuel_i']
c_other_i = params_dict['c_other_i']
c_inv_i = params_dict['c_inv_i']
co2_factor_i = params_dict['co2_factor_i']
#c_var_i = params_dict['c_var_i']
s_t_r_iRes = timstep_aggregate(dt,params_dict['s_t_r_iRes'])
K_0_i = params_dict['K_0_i']
e2p_iSto = params_dict['e2p_iSto']
h_t = timstep_aggregate(dt,params_dict['h_t'])

t = D_t.get_index('t')
partial_year_factor = (8760/len(t))/dt
# # Slider for gas price [€/MWh_th]
#price_gas = st.slider(value=100, min_value=0, max_value=400, label="Natural gas price [€/MWh]", step=10)

# Slider for CO2 price [€/t]
#price_co2 = st.slider(value=0, min_value=0, max_value=400, label="CO2 price [€/t CO2eq]", step=10)

with col2:
    # Slider for CO2 limit [mio. t]
    l_co2 = st.slider(value=int(params_dict['l_co2']), min_value=0, max_value=750, label="CO2 limit [mio. t]", step=50)

    # Slider for H2 price / usevalue [€/MWH_th]
    price_h2 = st.slider(value=100, min_value=0, max_value=300, label="Hydrogen price [€/MWh]", step=10)

    for i_idx in c_fuel_i.get_index('i'):
            if i_idx in ['Lignite']:
                c_fuel_i.loc[i_idx] = st.slider(value=int(c_fuel_i.loc[i_idx]), min_value=0, max_value=300, label=i_idx + ' Price' , step=10)

with col3:
    # Slider for CO2 limit [mio. t]
    for i_idx in c_fuel_i.get_index('i'):
            if i_idx in ['Fossil Hard coal', 'Fossil Oil','Fossil Gas']:
                c_fuel_i.loc[i_idx] = st.slider(value=int(c_fuel_i.loc[i_idx]), min_value=0, max_value=300, label=i_idx + ' Price' , step=10)


#time_steps_aggregate = 6
#= xr_profiles.rolling( time_step = time_steps_aggregate).mean().sel(time_step = time[0::time_steps_aggregate])
price_co2 = 0


#technologies_no_invest = st.multiselect(label='Technolgy invest', options=i)
technologies_no_invest = ['Electrolyzer','Biomass','RoR']
# %%
### Variables
m = Model()

C_tot = m.add_variables(name = 'C_tot')     # Total costs
C_op = m.add_variables(name = 'C_op', lower = 0)       # Operational costs
C_inv = m.add_variables(name = 'C_inv', lower = 0)     # Investment costs

K = m.add_variables(coords = [i], name = 'K', lower = 0)          # Endogenous capacity
y = m.add_variables(coords = [t,i], name = 'y', lower = 0)          # Electricity production --> für Elektrolyseure ausschließen
y_ch = m.add_variables(coords = [t,i], name = 'y_ch', lower = 0)    # Electricity consumption --> für alles außer Elektrolyseure und Speicher ausschließen
l = m.add_variables(coords = [t,i], name = 'l', lower = 0)          # Storage filling level
w = m.add_variables(coords = [t], name = 'w', lower = 0)          # RES curtailment


## Objective function
C_tot = C_op + C_inv
m.add_objective(C_tot)

## Costs terms for objective function
# Operational costs minus revenue for produced hydrogen
C_op_sum = m.add_constraints((y * c_fuel_i/eff_i).sum()*dt*partial_year_factor  == C_op, name = 'C_op_sum')

# Investment costs
C_inv_sum = m.add_constraints((K * c_inv_i).sum() == C_inv, name = 'C_inv_sum')

## Load serving
loadserve_t = m.add_constraints(((y ).sum(dims = 'i') - (w ) - y_ch.sum(dims = 'i')  == D_t.sel(t = t) ), name =  'load')

## Maximum capacity limit
maxcap_i_t = m.add_constraints((y - K <= K_0_i), name =  'max_cap')

## Maximum capacity limit
maxcap_invest_i = m.add_constraints((K.sel(i = technologies_no_invest) <= 0), name =  'max_cap_invest')

## Maximum storage charging and discharging
maxcha_iSto_t = m.add_constraints((y.sel(i = iSto) + y_ch.sel(i = iSto)  - K.sel(i = iSto) <= K_0_i.sel(i = iSto)), name =  'max_cha')

## Maximum electrolyzer capacity
ptg_prod_iPtG_t = m.add_constraints((y_ch.sel(i = iPtG) - K.sel(i = iPtG)<= K_0_i.sel(i = iPtG)), name = 'max_cha_ptg')

## Infeed of renewables
infeed_iRes_t = m.add_constraints((y.sel(i = iRes) - s_t_r_iRes.sel(i = iRes).sel(t = t) * K.sel(i = iRes) <= s_t_r_iRes.sel(i = iRes).sel(t = t) * K_0_i.sel(i = iRes)), name =  'infeed')

## Maximum filling level restriction storage power plant --> Energy-to-Power-Ratio eingeführt. (JR)
maxcapsto_iSto_t = m.add_constraints((l.sel(i = iSto) - K.sel(i = iSto) * e2p_iSto.sel(i = iSto) <= K_0_i.sel(i = iSto) * e2p_iSto.sel(i = iSto)), name = 'max_sto_filling')

## Filling level restriction hydro reservoir --> Ist Kreisbedingung erfüllt? (JR)
filling_iHydro_t = m.add_constraints(l.sel(i = iHyRes) - l.sel(i = iHyRes).roll(t = -1) + y.sel(i = iHyRes) * dt == h_t.sel(t = t) * dt, name = 'filling_level_hydro')

## Filling level restriction other storages --> Ist Kreisbedingung erfüllt? (JR)
filling_iSto_t = m.add_constraints(l.sel(i = iSto) - (l.sel(i = iSto).roll(t = -1) + (y.sel(i = iSto) ) * dt - y_ch.sel(i = iSto) * eff_i.sel(i = iSto) * dt) == 0, name = 'filling_level')

## CO2 limit --> ggf. hier auch mit Subset arbeiten (Technologien, die Brennstoff verbrauchen). (JR)
CO2_limit = m.add_constraints(((y / eff_i) * co2_factor_i * dt).sum()* partial_year_factor <= l_co2*1_000_000 , name = 'CO2_limit')


# %%
m.solve(solver_name = 'highs')

st.markdown("---")

colb1, colb2 = st.columns(2)

# %%
#c_var_i.to_dataframe(name='VarCosts')
# %%
# Installed Cap
# Assuming df_excel has columns 'All' and 'Capacities'

fig = px.bar((m.solution['K']+K_0_i).to_dataframe(name='K').reset_index(), \
                y='i', x='K', orientation='h', title='Total Installed Capacities', color='i')

#fig

# %%
df_new_capacities = m.solution['K'].to_dataframe().reset_index()
fig = px.bar(m.solution['K'].to_dataframe().reset_index(), y='i', x='K', orientation='h', title='New Capacities', color='i')

with colb1:
    fig

# %%
i_with_capacity = m.solution['K'].where( m.solution['K'] > 0).dropna(dim = 'i').get_index('i')
df_production = m.solution['y'].sel(i = i_with_capacity).to_dataframe().reset_index()
fig = px.area(m.solution['y'].sel(i = i_with_capacity).to_dataframe().reset_index(), y='y', x='t',  title='Production', color='i')


with colb2:
    fig


# %%

df_price = m.constraints['load'].dual.to_dataframe().reset_index()
df_price['dual'] = df_price['dual']/dt

# %%
fig = px.line(df_price, y='dual', x='t',  title='Prices')
with colb1:
    fig


# %% 

df_contr_marg = m.constraints['max_cap'].dual.to_dataframe().reset_index()
df_contr_marg['dual'] = df_contr_marg['dual']/dt
# %%

fig = px.line(m.constraints['max_cap'].dual.to_dataframe().reset_index(), y='dual', x='t',title='contribution margin', color='i')
with colb2:
    fig

    

# %%
df_Co2_price = pd.DataFrame({'CO2_Price': [float(m.constraints['CO2_limit'].dual.values)]})

with colb2:
    st.write('CO2 Price ' + str(df_Co2_price))


# %%
((m.solution['y'] / eff_i) * co2_factor_i * dt).sum()
# %%

import pandas as pd
from io import BytesIO
#from pyxlsb import open_workbook as open_xlsb
import streamlit as st
import xlsxwriter
# %%
output = BytesIO()


# Create a Pandas Excel writer using XlsxWriter as the engine
with pd.ExcelWriter(output, engine='xlsxwriter') as writer:
    # Write each DataFrame to a different sheet
    df_price.to_excel(writer, sheet_name='Prices', index=False)
    df_contr_marg.to_excel(writer, sheet_name='Contribution Margin', index=False)
    df_new_capacities.to_excel(writer, sheet_name='Capacities', index=False)
    df_production.to_excel(writer, sheet_name='Production', index=False)
    df_Co2_price.to_excel(writer, sheet_name='CO2_Price', index=False)
    

with col4:
    st.download_button(
        label="Download Excel workbook Results",
        data=output.getvalue(),
        file_name="workbook.xlsx",
        mime="application/vnd.ms-excel"
    )