File size: 3,517 Bytes
0356719
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
# Copyright [2021] Xintao Wang
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.



import functools
import torch
import torch.nn as nn
import torch.nn.functional as F


def make_layer(block, n_layers):
    layers = []
    for _ in range(n_layers):
        layers.append(block())
    return nn.Sequential(*layers)


class ResidualDenseBlock_5C(nn.Module):
    def __init__(self, nf=64, gc=32, bias=True):
        super(ResidualDenseBlock_5C, self).__init__()
        # gc: growth channel, i.e. intermediate channels
        self.conv1 = nn.Conv2d(nf, gc, 3, 1, 1, bias=bias)
        self.conv2 = nn.Conv2d(nf + gc, gc, 3, 1, 1, bias=bias)
        self.conv3 = nn.Conv2d(nf + 2 * gc, gc, 3, 1, 1, bias=bias)
        self.conv4 = nn.Conv2d(nf + 3 * gc, gc, 3, 1, 1, bias=bias)
        self.conv5 = nn.Conv2d(nf + 4 * gc, nf, 3, 1, 1, bias=bias)
        self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)

        # initialization
        # mutil.initialize_weights([self.conv1, self.conv2, self.conv3, self.conv4, self.conv5], 0.1)

    def forward(self, x):
        x1 = self.lrelu(self.conv1(x))
        x2 = self.lrelu(self.conv2(torch.cat((x, x1), 1)))
        x3 = self.lrelu(self.conv3(torch.cat((x, x1, x2), 1)))
        x4 = self.lrelu(self.conv4(torch.cat((x, x1, x2, x3), 1)))
        x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
        return x5 * 0.2 + x


class RRDB(nn.Module):
    '''Residual in Residual Dense Block'''

    def __init__(self, nf, gc=32):
        super(RRDB, self).__init__()
        self.RDB1 = ResidualDenseBlock_5C(nf, gc)
        self.RDB2 = ResidualDenseBlock_5C(nf, gc)
        self.RDB3 = ResidualDenseBlock_5C(nf, gc)

    def forward(self, x):
        out = self.RDB1(x)
        out = self.RDB2(out)
        out = self.RDB3(out)
        return out * 0.2 + x


class RRDBNet(nn.Module):
    def __init__(self, in_nc, out_nc, nf, nb, gc=32):
        super(RRDBNet, self).__init__()
        RRDB_block_f = functools.partial(RRDB, nf=nf, gc=gc)

        self.conv_first = nn.Conv2d(in_nc, nf, 3, 1, 1, bias=True)
        self.RRDB_trunk = make_layer(RRDB_block_f, nb)
        self.trunk_conv = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
        #### upsampling
        self.upconv1 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
        self.upconv2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
        self.HRconv = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
        self.conv_last = nn.Conv2d(nf, out_nc, 3, 1, 1, bias=True)

        self.lrelu = nn.LeakyReLU(negative_slope=0.2, inplace=True)

    def forward(self, x):
        fea = self.conv_first(x)
        trunk = self.trunk_conv(self.RRDB_trunk(fea))
        fea = fea + trunk

        fea = self.lrelu(self.upconv1(F.interpolate(fea, scale_factor=2, mode='nearest')))
        fea = self.lrelu(self.upconv2(F.interpolate(fea, scale_factor=2, mode='nearest')))
        out = self.conv_last(self.lrelu(self.HRconv(fea)))

        return out