File size: 5,108 Bytes
a7d2bd1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
import os
import re
import json
import torch
import librosa
import soundfile
import torchaudio
import numpy as np
import torch.nn as nn
from tqdm import tqdm
import torch

from . import utils
from . import commons
from .models import SynthesizerTrn
from .split_utils import split_sentence
from .mel_processing import spectrogram_torch, spectrogram_torch_conv
from .download_utils import load_or_download_config, load_or_download_model

class TTS(nn.Module):
    def __init__(self, 
                language,
                device='auto',
                use_hf=True,
                config_path=None,
                ckpt_path=None):
        super().__init__()
        if device == 'auto':
            device = 'cpu'
            if torch.cuda.is_available(): device = 'cuda'
            if torch.backends.mps.is_available(): device = 'mps'
        if 'cuda' in device:
            assert torch.cuda.is_available()

        # config_path = 
        hps = load_or_download_config(language, use_hf=use_hf, config_path=config_path)

        num_languages = hps.num_languages
        num_tones = hps.num_tones
        symbols = hps.symbols

        model = SynthesizerTrn(
            len(symbols),
            hps.data.filter_length // 2 + 1,
            hps.train.segment_size // hps.data.hop_length,
            n_speakers=hps.data.n_speakers,
            num_tones=num_tones,
            num_languages=num_languages,
            **hps.model,
        ).to(device)

        model.eval()
        self.model = model
        self.symbol_to_id = {s: i for i, s in enumerate(symbols)}
        self.hps = hps
        self.device = device
    
        # load state_dict
        checkpoint_dict = load_or_download_model(language, device, use_hf=use_hf, ckpt_path=ckpt_path)
        self.model.load_state_dict(checkpoint_dict['model'], strict=True)
        
        language = language.split('_')[0]
        self.language = 'ZH_MIX_EN' if language == 'ZH' else language # we support a ZH_MIX_EN model

    @staticmethod
    def audio_numpy_concat(segment_data_list, sr, speed=1.):
        audio_segments = []
        for segment_data in segment_data_list:
            audio_segments += segment_data.reshape(-1).tolist()
            audio_segments += [0] * int((sr * 0.05) / speed)
        audio_segments = np.array(audio_segments).astype(np.float32)
        return audio_segments

    @staticmethod
    def split_sentences_into_pieces(text, language, quiet=False):
        texts = split_sentence(text, language_str=language)
        if not quiet:
            print(" > Text split to sentences.")
            print('\n'.join(texts))
            print(" > ===========================")
        return texts

    def tts_to_file(self, text, speaker_id, output_path=None, sdp_ratio=0.2, noise_scale=0.6, noise_scale_w=0.8, speed=1.0, pbar=None, format=None, position=None, quiet=False,):
        language = self.language
        texts = self.split_sentences_into_pieces(text, language, quiet)
        audio_list = []
        if pbar:
            tx = pbar(texts)
        else:
            if position:
                tx = tqdm(texts, position=position)
            elif quiet:
                tx = texts
            else:
                tx = tqdm(texts)
        for t in tx:
            if language in ['EN', 'ZH_MIX_EN']:
                t = re.sub(r'([a-z])([A-Z])', r'\1 \2', t)
            device = self.device
            bert, ja_bert, phones, tones, lang_ids = utils.get_text_for_tts_infer(t, language, self.hps, device, self.symbol_to_id)
            with torch.no_grad():
                x_tst = phones.to(device).unsqueeze(0)
                tones = tones.to(device).unsqueeze(0)
                lang_ids = lang_ids.to(device).unsqueeze(0)
                bert = bert.to(device).unsqueeze(0)
                ja_bert = ja_bert.to(device).unsqueeze(0)
                x_tst_lengths = torch.LongTensor([phones.size(0)]).to(device)
                del phones
                speakers = torch.LongTensor([speaker_id]).to(device)
                audio = self.model.infer(
                        x_tst,
                        x_tst_lengths,
                        speakers,
                        tones,
                        lang_ids,
                        bert,
                        ja_bert,
                        sdp_ratio=sdp_ratio,
                        noise_scale=noise_scale,
                        noise_scale_w=noise_scale_w,
                        length_scale=1. / speed,
                    )[0][0, 0].data.cpu().float().numpy()
                del x_tst, tones, lang_ids, bert, ja_bert, x_tst_lengths, speakers
                # 
            audio_list.append(audio)
        torch.cuda.empty_cache()
        audio = self.audio_numpy_concat(audio_list, sr=self.hps.data.sampling_rate, speed=speed)

        if output_path is None:
            return audio
        else:
            if format:
                soundfile.write(output_path, audio, self.hps.data.sampling_rate, format=format)
            else:
                soundfile.write(output_path, audio, self.hps.data.sampling_rate)