Spaces:
Running
Running
File size: 28,836 Bytes
70d905f 12c6662 97bf1d0 12c6662 97bf1d0 12c6662 70d905f 12c6662 70d905f 97bf1d0 12c6662 70d905f 97bf1d0 12c6662 97bf1d0 12c6662 97bf1d0 12c6662 97bf1d0 12c6662 97bf1d0 12c6662 97bf1d0 12c6662 97bf1d0 12c6662 97bf1d0 12c6662 97bf1d0 12c6662 97bf1d0 12c6662 97bf1d0 12c6662 97bf1d0 12c6662 97bf1d0 12c6662 97bf1d0 12c6662 97bf1d0 12c6662 97bf1d0 12c6662 97bf1d0 12c6662 97bf1d0 12c6662 97bf1d0 12c6662 97bf1d0 12c6662 97bf1d0 12c6662 97bf1d0 12c6662 97bf1d0 12c6662 97bf1d0 12c6662 97bf1d0 12c6662 70d905f 12c6662 70d905f 12c6662 70d905f 12c6662 70d905f 12c6662 70d905f 12c6662 70d905f 12c6662 97bf1d0 12c6662 70d905f 12c6662 70d905f 12c6662 97bf1d0 12c6662 97bf1d0 70d905f 12c6662 97bf1d0 12c6662 97bf1d0 12c6662 97bf1d0 12c6662 5defe06 12c6662 97bf1d0 5defe06 12c6662 97bf1d0 12c6662 97bf1d0 12c6662 70d905f 12c6662 97bf1d0 12c6662 97bf1d0 12c6662 97bf1d0 12c6662 97bf1d0 12c6662 97bf1d0 12c6662 97bf1d0 12c6662 97bf1d0 12c6662 97bf1d0 12c6662 97bf1d0 12c6662 70d905f 12c6662 70d905f 97bf1d0 70d905f 97bf1d0 12c6662 97bf1d0 12c6662 97bf1d0 12c6662 70d905f 12c6662 70d905f 97bf1d0 12c6662 97bf1d0 12c6662 97bf1d0 7984e9a 97bf1d0 7984e9a 5defe06 7984e9a 97bf1d0 7984e9a 12c6662 97bf1d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 |
## Gradio Example
# This app makes use of the saliency generation example found in the base ``xaitk-saliency`` repo [here](https://github.com/XAITK/xaitk-saliency/blob/master/examples/OcclusionSaliency.ipynb), and explores integrating ``xaitk-saliency`` with ``Gradio`` to create an interactive interface for computing saliency maps.
import os
import sys
import PIL.Image
import matplotlib.pyplot as plt # type: ignore
import urllib
import numpy as np
from git import Repo
import gradio as gr
from gradio import ( # type: ignore
AnnotatedImage, Button, Column, Image, Label, # type: ignore
Number, Plot, Row, TabItem, Tab, Tabs, # type: ignore
Checkbox, Dropdown, Slider, Textbox # type: ignore
)
# State variables for Image Classification
from gr_component_state import ( # type: ignore
img_cls_model_name, img_cls_saliency_algo_name, window_size_state, stride_state, debiased_state,
)
# State functions for Image Classification
from gr_component_state import ( # type: ignore
select_img_cls_model, select_img_cls_saliency_algo, enter_window_size, enter_stride, check_debiased
)
# State variables for Object Detection
from gr_component_state import ( # type: ignore
obj_det_model_name, obj_det_saliency_algo_name, occlusion_grid_state
)
# State functions for Object Detection
from gr_component_state import ( # type: ignore
select_obj_det_model, select_obj_det_saliency_algo, enter_occlusion_grid_size
)
# Common state variables
from gr_component_state import ( # type: ignore
threads_state, num_masks_state, spatial_res_state, p1_state, seed_state
)
# Common state functions
from gr_component_state import ( # type: ignore
select_threads, enter_num_masks, enter_spatial_res, select_p1, enter_seed
)
import torch
import torchvision.transforms as transforms
import torchvision.models as models
import torch.nn.functional
from torch.utils.data import Dataset, DataLoader
from smqtk_detection.impls.detect_image_objects.resnet_frcnn import ResNetFRCNN
from xaitk_saliency.impls.gen_image_classifier_blackbox_sal.slidingwindow import SlidingWindowStack
from xaitk_saliency.impls.gen_image_classifier_blackbox_sal.rise import RISEStack
from xaitk_saliency.impls.gen_object_detector_blackbox_sal.drise import RandomGridStack, DRISEStack
from xaitk_saliency.interfaces.gen_object_detector_blackbox_sal import GenerateObjectDetectorBlackboxSaliency
from smqtk_detection.interfaces.detect_image_objects import DetectImageObjects
from smqtk_classifier.interfaces.classify_image import ClassifyImage
from smqtk_image_io import AxisAlignedBoundingBox
from typing import Iterable, Dict, Hashable, Tuple
os.makedirs('data', exist_ok=True)
test_image_filename = 'data/catdog.jpg'
urllib.request.urlretrieve('https://farm1.staticflickr.com/74/202734059_fcce636dcd_z.jpg', test_image_filename)
plt.figure(figsize=(12, 8))
plt.axis('off')
_ = plt.imshow(PIL.Image.open(test_image_filename))
CUDA_AVAILABLE = torch.cuda.is_available()
model_input_size = (224, 224)
model_mean = [0.485, 0.456, 0.406]
model_loader = transforms.Compose([
transforms.ToPILImage(),
transforms.Resize(model_input_size),
transforms.ToTensor(),
transforms.Normalize(
mean=model_mean,
std=[0.229, 0.224, 0.225]
),
])
def get_sal_labels(classes_file, custom_categories_list=None):
if not os.path.isfile(classes_file):
url = "https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt"
_ = urllib.request.urlretrieve(url, classes_file)
f = open(classes_file, "r")
categories = [s.strip() for s in f.readlines()]
if not custom_categories_list == None:
sal_class_labels = custom_categories_list
else:
sal_class_labels = categories
sal_class_idxs = [categories.index(lbl) for lbl in sal_class_labels]
return sal_class_labels, sal_class_idxs
def get_det_sal_labels(classes_file, custom_categories_list=None):
if not os.path.isfile(classes_file):
url = "https://raw.githubusercontent.com/matlab-deep-learning/Object-Detection-Using-Pretrained-YOLO-v2/main/%2Bhelper/coco-classes.txt"
_ = urllib.request.urlretrieve(url, classes_file)
f = open(classes_file, "r")
categories = [s.strip() for s in f.readlines()]
if not custom_categories_list == None:
sal_obj_labels = custom_categories_list
else:
sal_obj_labels = categories
sal_obj_idxs = [categories.index(lbl) for lbl in sal_obj_labels]
return sal_obj_labels, sal_obj_idxs
def get_model(model_choice):
if model_choice == "ResNet-18":
model = models.resnet18(pretrained=True)
else:
model = models.resnet50(pretrained=True)
model = model.eval()
if CUDA_AVAILABLE:
model = model.cuda()
return model
def get_detection_model(model_choice):
if model_choice == "Faster-RCNN":
blackbox_detector = ResNetFRCNN(
box_thresh=0.05,
img_batch_size=1,
use_cuda=CUDA_AVAILABLE
)
elif model_choice == "TPH-YOLOv5":
dest = os.path.join(data_path, 'tph-yolov5')
if not os.path.isdir(dest):
Repo.clone_from("https://github.com/cv516Buaa/tph-yolov5.git", dest)
sys.path.insert(1, dest)
# imports from TPH-YOLOv5 github repo
from utils.augmentations import letterbox
from models.experimental import attempt_load
from utils.datasets import LoadImages
from utils.general import non_max_suppression, scale_coords
class YOLOVisdrone(DetectImageObjects):
def __init__(
self,
weights,
img_size=(640, 640),
batch_size=1,
conf_thresh=0.5,
iou_thresh=0.5,
use_cuda=False,
num_workers=4
):
"""
img_size: size of image input to model
batch_size: number of images to input as once
conf_thresh: confidence threshold for detection results
iou_thresh: IOU threshold for NMS
use_cuda: use CUDA device to compute detections
num_workers: number of worker processes to use for data loading
"""
self.img_size = np.array(img_size)
if use_cuda:
self.device = torch.device('cuda:0')
else:
self.device = torch.device('cpu')
self.model = attempt_load(weights).to(self.device)
self.model = self.model.eval()
self.conf_thresh = conf_thresh
self.iou_thresh = iou_thresh
self.batch_size = batch_size
self.num_workers = num_workers
with torch.no_grad():
_ = self.model(torch.zeros(1, 3, *self.img_size).to(self.device)) # warm up
def detect_objects(
self,
imgIter: Iterable[np.ndarray]
) -> Iterable[Iterable[Tuple[AxisAlignedBoundingBox, Dict[Hashable, float]]]]:
# pytorch DataLoader for passed images
dataset = DataLoader(
pytorchDataset(
imgIter,
img_size=self.img_size,
),
batch_size=self.batch_size,
num_workers=self.num_workers
)
# list of AxisAlignedBoundingBox detections to return
preds = []
for i, (img_batch, hs, ws) in enumerate(dataset):
# load batch and normalize
img_batch = img_batch.to(self.device)
img_batch = img_batch.float()
img_batch /= 255
# pass through model
with torch.no_grad():
pred_batch = self.model(img_batch)[0]
# perform NMS and scale detections to original image dimensions
for img_pred, h, w in zip(pred_batch, hs, ws):
img_pred = non_max_suppression(
img_pred[None], conf_thres=self.conf_thresh, iou_thres=self.iou_thresh)[0]
img_pred[:, :4] = scale_coords(
img_batch.shape[2:], img_pred[:, :4], (h, w))
img_pred = img_pred.cpu().numpy()
preds.append(pred_mat_to_list(img_pred))
return preds
# requried by interface
def get_config(self):
return {}
class pytorchDataset(Dataset):
"""
pyTorch DataLoader for images. Resizes image to model input size and
returns original height and width as well.
"""
def __init__(self, imgs, img_size=[640, 640]):
self.imgs = list(imgs)
self.img_size = img_size
def __getitem__(self, idx):
img = self.imgs[idx]
h = img.shape[0]
w = img.shape[1]
img = letterbox(img, new_shape=self.img_size, auto=True)[0]
img = img.transpose((2, 0, 1))
img = np.ascontiguousarray(img)
return img, h, w
def __len__(self):
return len(self.imgs)
def pred_mat_to_list(preds):
"""
Convert prediction matrix model output to AxisAlignedBoundingBox format.
"""
pred_list = []
for pred in preds:
bbox = AxisAlignedBoundingBox(pred[0:2], pred[2:4])
CLASS_NAMES = ['pedestrian', 'people', 'bicycle', 'car', 'van', 'truck',
'tricycle', 'awning-tricycle', 'bus', 'motor']
score_dict = dict.fromkeys(CLASS_NAMES, 0)
score_dict[CLASS_NAMES[int(pred[5])]] = pred[4]
pred_list.append((bbox, score_dict))
return pred_list
model_file = os.path.join(data_path,'tph-yolov5.pth')
if not os.path.isfile(model_file):
urllib.request.urlretrieve('https://data.kitware.com/api/v1/item/623880d04acac99f429fe3bf/download', model_file)
blackbox_detector = YOLOVisdrone(
weights=model_file,
img_size=(1536,1536),
batch_size=1,
use_cuda=CUDA_AVAILABLE,
num_workers=4,
conf_thresh=0.1,
iou_thresh=0.5
)
else:
raise Exception("Unknown Input")
return blackbox_detector
def get_saliency_algo(sal_choice):
if sal_choice == "RISE":
gen_sal = RISEStack(
n=num_masks_state[-1],
s=spatial_res_state[-1],
p1=p1_state[-1],
seed=seed_state[-1],
threads=threads_state[-1],
debiased=debiased_state[-1]
)
elif sal_choice == "SlidingWindowStack":
gen_sal = SlidingWindowStack(
window_size=eval(window_size_state[-1]),
stride=eval(stride_state[-1]),
threads=threads_state[-1]
)
else:
raise Exception("Unknown Input")
return gen_sal
def get_detection_saliency_algo(sal_choice):
if sal_choice == "RandomGridStack":
gen_sal = RandomGridStack(
n=num_masks_state[-1],
s=eval(occlusion_grid_state[-1]),
p1=p1_state[-1],
threads=threads_state[-1],
seed=seed_state[-1],
)
elif sal_choice == "DRISE":
gen_sal = DRISEStack(
n=num_masks_state[-1],
s=spatial_res_state[-1],
p1=p1_state[-1],
seed=seed_state[-1],
threads=threads_state[-1]
)
else:
raise Exception("Unknown Input")
return gen_sal
data_path = "./data"
if not os.path.exists(data_path):
os.makedirs(data_path)
# Setup imagenet classes and ClassifyImage for generating classification saliency
classes_file = os.path.join(data_path,"imagenet_classes.txt")
sal_class_labels, sal_class_idxs = get_sal_labels(classes_file)
class TorchResnet (ClassifyImage):
modified_class_labels = []
def get_labels(self):
return self.modified_class_labels
def set_labels(self, class_labels):
self.modified_class_labels = [lbl for lbl in class_labels]
@torch.no_grad()
def classify_images(self, image_iter):
# Input may either be an NDaray, or some arbitrary iterable of NDarray images.
model = get_model(img_cls_model_name[-1])
for img in image_iter:
image_tensor = model_loader(img).unsqueeze(0)
if CUDA_AVAILABLE:
image_tensor = image_tensor.cuda()
feature_vec = model(image_tensor)
# Converting feature extractor output to probabilities.
class_conf = torch.nn.functional.softmax(feature_vec, dim=1).cpu().detach().numpy().squeeze()
# Only return the confidences for the focus classes
yield dict(zip(sal_class_labels, class_conf[sal_class_idxs]))
def get_config(self):
# Required by a parent class.
return {}
blackbox_classifier, blackbox_fill = TorchResnet(), np.uint8(np.asarray(model_mean) * 255).tolist()
# Setup COCO object classes for generating detection saliency
obj_classes_file = os.path.join(data_path,"coco_classes.txt")
sal_obj_labels, sal_obj_idxs = get_det_sal_labels(obj_classes_file)
# Modify textbox parameters based on chosen saliency algorithm
def show_textbox_parameters(choice):
if choice == 'RISE':
return Textbox(visible=False), Textbox(visible=False), Textbox(visible=True), Textbox(visible=True), Textbox(visible=True)
elif choice == 'SlidingWindowStack':
return Textbox(visible=True), Textbox(visible=True), Textbox(visible=False), Textbox(visible=False), Textbox(visible=False)
elif choice == "RandomGridStack":
return Textbox(visible=True), Textbox(visible=False), Textbox(visible=True), Textbox(visible=True)
elif choice == "DRISE":
return Textbox(visible=True), Textbox(visible=True), Textbox(visible=True), Textbox(visible=False)
else:
raise Exception("Unknown Input")
# Modify slider parameters based on chosen saliency algorithm
def show_slider_parameters(choice):
if choice == 'RISE' or choice == 'RandomGridStack' or choice == 'DRISE':
return Slider(visible=True), Slider(visible=True)
elif choice == 'SlidingWindowStack':
return Slider(visible=True), Slider(visible=False)
else:
raise Exception("Unknown Input")
# Modify checkbox parameters based on chosen saliency algorithm
def show_debiased_checkbox(choice):
if choice == 'RISE':
return Checkbox(visible=True)
elif choice == 'SlidingWindowStack' or choice == 'RandomGridStack' or choice == 'DRISE':
return Checkbox(visible=False)
else:
raise Exception("Unknown Input")
# Function that is called after clicking the "Classify" button in the demo
def predict(x,top_n_classes):
image_tensor = model_loader(x).unsqueeze(0)
if CUDA_AVAILABLE:
image_tensor = image_tensor.cuda()
model = get_model(img_cls_model_name[-1])
feature_vec = model(image_tensor)
class_conf = torch.nn.functional.softmax(feature_vec, dim=1).cpu().detach().numpy().squeeze()
labels = list(zip(sal_class_labels, class_conf[sal_class_idxs].tolist()))
final_labels = dict(sorted(labels, key=lambda t: t[1],reverse=True)[:top_n_classes])
return final_labels, Dropdown(choices=list(final_labels))
# Interpretation function for image classification that implements the selected saliency algorithm and generates the class-wise saliency map visualizations
def interpretation_function(image: np.ndarray,
labels: dict,
nth_class: str,
img_alpha,
sal_alpha,
sal_range_min,
sal_range_max):
sal_generator = get_saliency_algo(img_cls_saliency_algo_name[-1])
sal_generator.fill = blackbox_fill
labels_list = labels.keys()
blackbox_classifier.set_labels(labels_list)
sal_maps = sal_generator(image, blackbox_classifier)
nth_class_index = blackbox_classifier.get_labels().index(nth_class)
fig = visualize_saliency_plot(image,
sal_maps[nth_class_index,:,:],
img_alpha,
sal_alpha,
sal_range_min,
sal_range_max)
return fig
def visualize_saliency_plot(image: np.ndarray,
class_sal_map: np.ndarray,
img_alpha,
sal_alpha,
sal_range_min,
sal_range_max):
colorbar_kwargs = {
"fraction": 0.046*(image.shape[0]/image.shape[1]),
"pad": 0.04,
}
fig = plt.figure()
plt.imshow(image, alpha=img_alpha)
plt.imshow(
np.clip(class_sal_map, sal_range_min, sal_range_max),
cmap='jet', alpha=sal_alpha
)
plt.clim(sal_range_min, sal_range_max)
plt.colorbar(**colorbar_kwargs)
plt.title(f"Saliency Map")
plt.axis('off')
plt.close(fig)
return fig
# Generate top-n object detect predictions on the input image
def run_detect(input_img: np.ndarray, num_detections: int):
detect_model = get_detection_model(obj_det_model_name[-1])
preds = list(list(detect_model([input_img]))[0])
n_preds = len(preds)
n_classes = len(preds[0][1])
bboxes = np.empty((n_preds, 4), dtype=np.float32)
scores = np.empty((n_preds, n_classes), dtype=np.float32)
max_scores_index = np.empty((n_preds, 1), dtype=int)
labels = None
final_bbox = []
final_label = []
for i, (bbox, score_dict) in enumerate(preds):
bboxes[i] = (*bbox.min_vertex, *bbox.max_vertex)
score_list = list(score_dict.values())
scores[i] = score_list
max_scores_index[i] = score_list.index(max(score_list))
if labels is None:
labels = list(score_dict.keys())
label_name = str(labels[int(max_scores_index[i,0])])
conf_score = str(round(score_list[int(max_scores_index[i,0])],4))
label_with_score = str(i) + " : "+ label_name + " - " + conf_score
final_label.append(label_with_score)
bboxes_list = bboxes[:,:].astype(int).tolist()
return (input_img, list(zip([f for f in bboxes_list], [l for l in final_label]))[:num_detections]), Dropdown(choices=[l for l in final_label][:num_detections])
# Run saliency algorithm on the object detect predictions and generate corresponding visualizations
def run_detect_saliency(input_img: np.ndarray,
num_predictions,
obj_label,
img_alpha,
sal_alpha,
sal_range_min,
sal_range_max):
detect_model = get_detection_model(obj_det_model_name[-1])
img_preds = list(list(detect_model([input_img]))[0])
ref_preds = img_preds[:int(num_predictions)]
ref_bboxes = []
ref_scores = []
for det in ref_preds:
bbox = det[0]
ref_bboxes.append([
*bbox.min_vertex,
*bbox.max_vertex,
])
score_dict = det[1]
ref_scores.append(list(score_dict.values()))
ref_bboxes = np.array(ref_bboxes)
ref_scores = np.array(ref_scores)
sal_generator = get_detection_saliency_algo(obj_det_saliency_algo_name[-1])
sal_generator.fill = blackbox_fill
sal_maps = gen_det_saliency(input_img, detect_model, sal_generator,ref_bboxes,ref_scores)
nth_class_index = int(obj_label.split(' : ')[0])
scores = sal_maps[nth_class_index,:,:]
fig = visualize_saliency_plot(input_img,
sal_maps[nth_class_index,:,:],
img_alpha,
sal_alpha,
sal_range_min,
sal_range_max)
scores = np.clip(scores, sal_range_min, sal_range_max)
return fig
def gen_det_saliency(input_img: np.ndarray,
blackbox_detector: DetectImageObjects,
sal_map_generator: GenerateObjectDetectorBlackboxSaliency,
ref_bboxes: np.ndarray,
ref_scores: np.ndarray
):
sal_maps = sal_map_generator.generate(
input_img,
ref_bboxes,
ref_scores,
blackbox_detector,
)
return sal_maps
with gr.Blocks() as xaitk_demo:
with Tab("Image Classification"):
with Row():
with Column():
drop_list = Dropdown(value=img_cls_model_name[-1],choices=["ResNet-18","ResNet-50"],label="Choose Model",interactive="True")
input_img = Image(label="Input Image")
num_classes = Slider(value=2,label="Top-N Class Labels", interactive=True,visible=True)
classify = Button("Classify")
class_label = Label(label="Predictions")
class_name = Dropdown(label="Class to Compute Saliency",interactive=True,visible=True)
with Column():
drop_list_sal = Dropdown(value=img_cls_saliency_algo_name[-1],choices=["SlidingWindowStack","RISE"],label="Choose Saliency Algorithm",interactive="True")
window_size = Textbox(value=window_size_state[-1],label="Tuple of window size values (Press Enter to submit the input)",interactive=True,visible=False)
masks = Number(value=num_masks_state[-1],label="Number of Random Masks (Press Enter to submit the input)",interactive=True,visible=True,precision=0)
stride = Textbox(value=stride_state[-1],label="Tuple of stride values (Press Enter to submit the input)" ,interactive=True,visible=False)
spatial_res = Number(value=spatial_res_state[-1],label="Spatial Resolution of Masking Grid (Press Enter to submit the input)" ,interactive=True,visible=True,precision=0)
debiased = Checkbox(value=debiased_state[-1],label="Debiased", interactive=True, visible=True)
seed = Number(value=seed_state[-1],label="Seed (Press Enter to submit the input)",interactive=True,visible=True,precision=0)
p1 = Slider(value=p1_state[-1],label="P1",interactive=True,visible=True, minimum=0,maximum=1,step=0.1)
threads = Slider(value=threads_state[-1],label="Threads",interactive=True,visible=True)
with Tabs():
with TabItem("Display Interpretation with Plot"):
interpretation_plot = Plot()
with Row():
img_alpha = Slider(value=0.7,label="Image Opacity",interactive=True,visible=True,minimum=0,maximum=1,step=0.1)
sal_alpha = Slider(value=0.3,label="Saliency Map Opacity",interactive=True,visible=True,minimum=0,maximum=1,step=0.1)
with Row():
min_sal_range = Slider(value=0,label="Minimum Saliency Value",interactive=True,visible=True,minimum=-1,maximum=1,step=0.05)
max_sal_range = Slider(value=1,label="Maximum Saliency Value",interactive=True,visible=True,minimum=-1,maximum=1,step=0.05)
generate_saliency = Button("Generate Saliency")
with Tab("Object Detection"):
with Row():
with Column():
drop_list_detect_model = Dropdown(value=obj_det_model_name[-1],choices=["Faster-RCNN", "TPH-YOLOv5"],label="Choose Model",interactive="True")
input_img_detect = Image(label="Input Image")
num_detections = Slider(value=2,label="Top-N Detections", interactive=True,visible=True)
detection = Button("Run Detection Algorithm")
detect_label = AnnotatedImage(label="Detections")
class_name_det = Dropdown(label="Detection to Compute Saliency",interactive=True,visible=True)
with Column():
drop_list_detect_sal = Dropdown(value=obj_det_saliency_algo_name[-1],choices=["RandomGridStack","DRISE"],label="Choose Saliency Algorithm",interactive="True")
masks_detect = Number(value=num_masks_state[-1],label="Number of Random Masks (Press Enter to submit the input)",interactive=True,visible=True,precision=0)
occlusion_grid_size = Textbox(value=occlusion_grid_state[-1],label="Tuple of occlusion grid size values (Press Enter to submit the input)",interactive=True,visible=False)
spatial_res_detect = Number(value=spatial_res_state[-1],label="Spatial Resolution of Masking Grid (Press Enter to submit the input)" ,interactive=True,visible=True,precision=0)
seed_detect = Number(value=seed_state[-1],label="Seed (Press Enter to submit the input)",interactive=True,visible=True,precision=0)
p1_detect = Slider(value=p1_state[-1],label="P1",interactive=True,visible=True, minimum=0,maximum=1,step=0.1)
threads_detect = Slider(value=threads_state[-1],label="Threads",interactive=True,visible=True)
with Tabs():
with TabItem("Display saliency map plot"):
det_saliency_plot = Plot()
with Row():
img_alpha_det = Slider(value=0.7,label="Image Opacity",interactive=True,visible=True,minimum=0,maximum=1,step=0.1)
sal_alpha_det = Slider(value=0.3,label="Saliency Map Opacity",interactive=True,visible=True,minimum=0,maximum=1,step=0.1)
with Row():
min_sal_range_det = Slider(value=0.95,label="Minimum Saliency Value",interactive=True,visible=True,minimum=0.80,maximum=1,step=0.05)
max_sal_range_det = Slider(value=1,label="Maximum Saliency Value",interactive=True,visible=True,minimum=0.80,maximum=1,step=0.05)
generate_det_saliency = Button("Generate Saliency")
# Image Classification dropdown list event listeners
drop_list.select(select_img_cls_model,drop_list,drop_list)
drop_list_sal.select(select_img_cls_saliency_algo,drop_list_sal,drop_list_sal)
drop_list_sal.change(show_textbox_parameters,drop_list_sal,[window_size,stride,masks,spatial_res,seed])
drop_list_sal.change(show_slider_parameters,drop_list_sal,[threads,p1])
drop_list_sal.change(show_debiased_checkbox,drop_list_sal,debiased)
# Image Classification textbox, slider and checkbox event listeners
window_size.submit(enter_window_size,window_size,window_size)
masks.submit(enter_num_masks,masks,masks)
stride.submit(enter_stride, stride, stride)
spatial_res.submit(enter_spatial_res, spatial_res, spatial_res)
seed.submit(enter_seed, seed, seed)
threads.change(select_threads, threads, threads)
p1.change(select_p1, p1, p1)
debiased.change(check_debiased,debiased,debiased)
# Image Classification prediction and saliency generation event listeners
classify.click(predict, [input_img, num_classes], [class_label,class_name])
generate_saliency.click(interpretation_function, [input_img, class_label, class_name, img_alpha, sal_alpha, min_sal_range, max_sal_range], [interpretation_plot])
# Object Detection dropdown list event listeners
drop_list_detect_model.select(select_obj_det_model,drop_list_detect_model,drop_list_detect_model)
drop_list_detect_sal.select(select_obj_det_saliency_algo,drop_list_detect_sal,drop_list_detect_sal)
drop_list_detect_sal.change(show_slider_parameters,drop_list_detect_sal,[threads_detect,p1_detect])
drop_list_detect_sal.change(show_textbox_parameters,drop_list_detect_sal,[masks_detect,spatial_res_detect,seed_detect,occlusion_grid_size])
# Object detection textbox and slider event listeners
masks_detect.submit(enter_num_masks,masks_detect,masks_detect)
occlusion_grid_size.submit(enter_occlusion_grid_size,occlusion_grid_size,occlusion_grid_size)
spatial_res_detect.submit(enter_spatial_res, spatial_res_detect, spatial_res_detect)
seed_detect.submit(enter_seed, seed_detect, seed_detect)
threads_detect.change(select_threads, threads_detect, threads_detect)
p1_detect.change(select_p1, p1_detect, p1_detect)
# Object detection prediction, class selection and saliency generation event listeners
detection.click(run_detect, [input_img_detect, num_detections], [detect_label,class_name_det])
generate_det_saliency.click(run_detect_saliency,[input_img_detect, num_detections, class_name_det, img_alpha_det, sal_alpha_det, min_sal_range_det, max_sal_range_det],det_saliency_plot)
xaitk_demo.launch(show_error=True)
|