Spaces:
Sleeping
Sleeping
File size: 3,115 Bytes
8ad03c1 3cb6896 8ad03c1 3cb6896 8ad03c1 3cb6896 8ad03c1 8b4e43a 3cb6896 8ad03c1 3cb6896 8ad03c1 d551a1b 8ad03c1 3cb6896 b00f3a4 3cb6896 8ad03c1 3cb6896 8ad03c1 09ba70b 8ad03c1 d551a1b 8ad03c1 3cb6896 8ad03c1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 |
# coding=utf8
from llama_index import load_index_from_storage, SimpleDirectoryReader, readers, GPTVectorStoreIndex,StorageContext, ServiceContext, LLMPredictor, PromptHelper
from langchain import OpenAI
import gradio as gr
import random
import time
import sys
import os
from transformers import pipeline
p = pipeline("automatic-speech-recognition")
os.environ["OPENAI_API_KEY"]
def transcribe(audio):
text = p(audio)["text"]
return text
def construct_index(directory_path):
num_outputs = 2000
prompt_helper = PromptHelper(context_window=3900, num_output=256, max_chunk_overlap=20, chunk_size_limit=1024)
llm_predictor = LLMPredictor(llm=OpenAI(temperature=0.0, model_name="text-davinci-003", max_tokens=num_outputs, top_p=1, frequency_penalty=0, presence_penalty=0))
documents = SimpleDirectoryReader(directory_path).load_data()
service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, prompt_helper=prompt_helper)
index = GPTVectorStoreIndex.from_documents(documents, service_context=service_context, prompt_helper=prompt_helper)
index.storage_context.persist(persist_dir='index.json')
return index
# Load CSS from a separate file
css_file = open("src/css/styles.css", "r")
css = css_file.read()
css_file.close()
def chatbot(input_text):
num_outputs = 4097
prompt_helper = PromptHelper(context_window=3900, num_output=256, max_chunk_overlap=20, chunk_size_limit=1024)
llm_predictor = LLMPredictor(llm=OpenAI(temperature=0.0, model_name="gpt-3.5-turbo-16k", max_tokens=num_outputs))
service_context = ServiceContext.from_defaults(llm_predictor=llm_predictor, prompt_helper=prompt_helper)
storage_context = StorageContext.from_defaults(persist_dir='index.json')
# load index
index = load_index_from_storage(storage_context)
query_engine = index.as_query_engine(service_context=service_context, verbose=True, response_mode="compact")
response = query_engine.query(input_text)
return str(response.response)
with gr.Blocks(css=css, title='Adega Hippo') as demo:
realPath = str(os.path.dirname(os.path.realpath(__file__)))
img1 = gr.Image("images/adega_hippo.png", elem_classes=".img.svelte-ms5bsk", elem_id="img.svelte-ms5bsk").style(container=False)
gpt = gr.Chatbot(label = ".", elem_classes=".wrap.svelte-1o68geq.svelte-1o68geq", elem_id="chatbot").style(container=True)
msg = gr.Textbox(elem_id="div.svelte-awbtu4",elem_classes="textBoxBot", show_label=False,
placeholder="Bem vindo ao Hippo Supermercados, em que posso ajuda-lo?",
).style(container=False)
#clear = gr.Button("Limpar Conversa")
# gr.Audio(source="microphone", type="filepath",label="ESTÁ COM DIFICULDADES EM ESCREVER? CLIQUE E ME DIGA O QUE DESEJA")
def respond(message, chat_history):
chat_history.append((message, chatbot(message)))
time.sleep(1)
return "", chat_history
# clear.click(lambda:None, None, gpt, queue=False,)
msg.submit(respond, [msg, gpt], [msg,gpt])
index = construct_index("docs")
demo.launch()
|