File size: 8,925 Bytes
9484a7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
import gradio as gr
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain_huggingface import HuggingFacePipeline
from langchain_huggingface import HuggingFaceEmbeddings
from langchain.chains import ConversationalRetrievalChain
from langchain.memory import ConversationBufferMemory

from pathlib import Path
import chromadb
from unidecode import unidecode
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline
import re

# Constants
LLM_MODEL = "t5-large"  # Using a larger model for better performance and longer responses
LLM_MAX_TOKEN = 1024
DB_CHUNK_SIZE = 512
CHUNK_OVERLAP = 24
TEMPERATURE = 0.1
MAX_TOKENS = 1024
TOP_K = 20
pdf_url = "https://huggingface.co/spaces/CCCDev/PDFChat/resolve/main/Privacy-Policy%20(1).pdf"  # Replace with your static PDF URL or path

# Load PDF document and create doc splits
def load_doc(pdf_url, chunk_size, chunk_overlap):
    loader = PyPDFLoader(pdf_url)
    pages = loader.load()
    text_splitter = RecursiveCharacterTextSplitter(chunk_size=chunk_size, chunk_overlap=chunk_overlap)
    doc_splits = text_splitter.split_documents(pages)
    return doc_splits

# Create vector database
def create_db(splits, collection_name):
    embedding = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
    new_client = chromadb.EphemeralClient()
    vectordb = Chroma.from_documents(
        documents=splits,
        embedding=embedding,
        client=new_client,
        collection_name=collection_name,
    )
    return vectordb

# Initialize langchain LLM chain
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
    progress(0.5, desc="Initializing HF Hub...")
    
    tokenizer = AutoTokenizer.from_pretrained(llm_model)
    model = AutoModelForSeq2SeqLM.from_pretrained(llm_model)
    summarization_pipeline = pipeline("summarization", model=model, tokenizer=tokenizer)
    pipe = HuggingFacePipeline(pipeline=summarization_pipeline)

    progress(0.75, desc="Defining buffer memory...")
    memory = ConversationBufferMemory(
        memory_key="chat_history",
        output_key='answer',
        return_messages=True
    )
    retriever = vector_db.as_retriever()
    progress(0.8, desc="Defining retrieval chain...")
    qa_chain = ConversationalRetrievalChain.from_llm(
        llm=pipe,
        retriever=retriever,
        chain_type="stuff",
        memory=memory,
        return_source_documents=True,
        verbose=False,
    )
    progress(0.9, desc="Done!")
    return qa_chain

# Generate collection name for vector database
def create_collection_name(filepath):
    collection_name = Path(filepath).stem
    collection_name = collection_name.replace(" ", "-")
    collection_name = unidecode(collection_name)
    collection_name = re.sub('[^A-Za-z0-9]+', '-', collection_name)
    collection_name = collection_name[:50]
    if len(collection_name) < 3:
        collection_name = collection_name + 'xyz'
    if not collection_name[0].isalnum():
        collection_name = 'A' + collection_name[1:]
    if not collection_name[-1].isalnum():
        collection_name = collection_name[:-1] + 'Z'
    return collection_name

# Initialize database
def initialize_database(pdf_url, chunk_size, chunk_overlap, progress=gr.Progress()):
    collection_name = create_collection_name(pdf_url)
    progress(0.25, desc="Loading document...")
    doc_splits = load_doc(pdf_url, chunk_size, chunk_overlap)
    progress(0.5, desc="Generating vector database...")
    vector_db = create_db(doc_splits, collection_name)
    progress(0.9, desc="Done!")
    return vector_db, collection_name, "Complete!"

def initialize_LLM(llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
    qa_chain = initialize_llmchain(LLM_MODEL, llm_temperature, max_tokens, top_k, vector_db, progress)
    return qa_chain, "Complete!"

def format_chat_history(message, chat_history):
    formatted_chat_history = []
    for user_message, bot_message in chat_history:
        formatted_chat_history.append(f"User: {user_message}")
        formatted_chat_history.append(f"Assistant: {bot_message}")
    return formatted_chat_history

def conversation(qa_chain, message, history):
    formatted_chat_history = format_chat_history(message, history)
    response = qa_chain({"question": message, "chat_history": formatted_chat_history})
    response_answer = response["answer"]
    if "Helpful Answer:" in response_answer:
        response_answer = response_answer.split("Helpful Answer:")[-1]
    response_sources = response["source_documents"]
    response_source1 = response_sources[0].page_content.strip()
    response_source2 = response_sources[1].page_content.strip()
    response_source3 = response_sources[2].page_content.strip()
    response_source1_page = response_sources[0].metadata["page"] + 1
    response_source2_page = response_sources[1].metadata["page"] + 1
    response_source3_page = response_sources[2].metadata["page"] + 1
    new_history = history + [(message, response_answer)]
    return qa_chain, gr.update(
        value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page

def demo():
    with gr.Blocks(theme="base") as demo:
        vector_db = gr.State()
        qa_chain = gr.State()
        collection_name = gr.State()

        gr.Markdown(
            """<center><h2>PDF-based chatbot</center></h2>
            <h3>Ask any questions about your PDF documents</h3>""")
        gr.Markdown(
            """<b>Note:</b> This AI assistant, using Langchain and open-source LLMs, performs retrieval-augmented generation (RAG) from your PDF documents. \
            The user interface explicitly shows multiple steps to help understand the RAG workflow. 
            This chatbot takes past questions into account when generating answers (via conversational memory), and includes document references for clarity purposes.<br>
            <br><b>Warning:</b> This space uses the free CPU Basic hardware from Hugging Face. Some steps and LLM models used below (free inference endpoints) can take some time to generate a reply.
            """)

        with gr.Tab("Step 4 - Chatbot"):
            chatbot = gr.Chatbot(height=300)
            with gr.Accordion("Advanced - Document references", open=False):
                with gr.Row():
                    doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
                    source1_page = gr.Number(label="Page", scale=1)
                with gr.Row():
                    doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
                    source2_page = gr.Number(label="Page", scale=1)
                with gr.Row():
                    doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
                    source3_page = gr.Number(label="Page", scale=1)
            with gr.Row():
                msg = gr.Textbox(placeholder="Type message (e.g. 'What is this document about?')", container=True)
            with gr.Row():
                submit_btn = gr.Button("Submit message")
                clear_btn = gr.ClearButton([msg, chatbot], value="Clear conversation")

        # Automatic preprocessing
        db_progress = gr.Textbox(label="Vector database initialization", value="Initializing...")
        db_btn = gr.Button("Generate vector database", visible=False)
        qachain_btn = gr.Button("Initialize Question Answering chain", visible=False)
        llm_progress = gr.Textbox(value="None", label="QA chain initialization")

        def auto_initialize():
            vector_db, collection_name, db_status = initialize_database(pdf_url, DB_CHUNK_SIZE, CHUNK_OVERLAP)
            qa_chain, llm_status = initialize_LLM(TEMPERATURE, LLM_MAX_TOKEN, 20, vector_db)
            return vector_db, collection_name, db_status, qa_chain, llm_status, "Initialization complete."

        demo.load(auto_initialize, [], [vector_db, collection_name, db_progress, qa_chain, llm_progress])

        # Chatbot events
        msg.submit(conversation, \
                   inputs=[qa_chain, msg, chatbot], \
                   outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3,
                            source3_page], \
                   queue=False)
        submit_btn.click(conversation, \
                         inputs=[qa_chain, msg, chatbot], \
                         outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page,
                                  doc_source3, source3_page], \
                         queue=False)
    return demo.queue().launch(debug=True)

if __name__ == "__main__":
    demo()