File size: 7,785 Bytes
92c3d7f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
# Copyright 2024 Black Forest Labs and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from typing import Any, Dict, Optional, Union

import numpy as np
import torch
from diffusers.models.modeling_outputs import Transformer2DModelOutput
from diffusers.utils import (
    USE_PEFT_BACKEND,
    logging,
    scale_lora_layers,
    unscale_lora_layers,
)

logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


def flux_transformer_forward(
    self,
    hidden_states: torch.Tensor,
    encoder_hidden_states: torch.Tensor = None,
    pooled_projections: torch.Tensor = None,
    timestep: torch.LongTensor = None,
    img_ids: torch.Tensor = None,
    txt_ids: torch.Tensor = None,
    guidance: torch.Tensor = None,
    joint_attention_kwargs: Optional[Dict[str, Any]] = None,
    controlnet_block_samples=None,
    controlnet_single_block_samples=None,
    return_dict: bool = True,
    controlnet_blocks_repeat: bool = False,
    embeddings: torch.Tensor = None,
) -> Union[torch.Tensor, Transformer2DModelOutput]:
    """
    The [`FluxTransformer2DModel`] forward method.

    Args:
        hidden_states (`torch.Tensor` of shape `(batch_size, image_sequence_length, in_channels)`):
            Input `hidden_states`.
        encoder_hidden_states (`torch.Tensor` of shape `(batch_size, text_sequence_length, joint_attention_dim)`):
            Conditional embeddings (embeddings computed from the input conditions such as prompts) to use.
        pooled_projections (`torch.Tensor` of shape `(batch_size, projection_dim)`): Embeddings projected
            from the embeddings of input conditions.
        timestep ( `torch.LongTensor`):
            Used to indicate denoising step.
        block_controlnet_hidden_states: (`list` of `torch.Tensor`):
            A list of tensors that if specified are added to the residuals of transformer blocks.
        joint_attention_kwargs (`dict`, *optional*):
            A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
            `self.processor` in
            [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
        return_dict (`bool`, *optional*, defaults to `True`):
            Whether or not to return a [`~models.transformer_2d.Transformer2DModelOutput`] instead of a plain
            tuple.

    Returns:
        If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
        `tuple` where the first element is the sample tensor.
    """
    if joint_attention_kwargs is not None:
        joint_attention_kwargs = joint_attention_kwargs.copy()
        lora_scale = joint_attention_kwargs.pop("scale", 1.0)
    else:
        lora_scale = 1.0

    if USE_PEFT_BACKEND:
        # weight the lora layers by setting `lora_scale` for each PEFT layer
        scale_lora_layers(self, lora_scale)
    else:
        if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
            logger.warning(
                "Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
            )

    hidden_states = self.x_embedder(hidden_states)
    # add task and idx embedding
    if embeddings is not None:
        hidden_states = hidden_states + embeddings

    timestep = timestep.to(hidden_states.dtype) * 1000
    guidance = guidance.to(hidden_states.dtype) * 1000 if guidance is not None else None

    temb = (
        self.time_text_embed(timestep, pooled_projections)
        if guidance is None
        else self.time_text_embed(timestep, guidance, pooled_projections)
    )
    encoder_hidden_states = self.context_embedder(encoder_hidden_states)

    if txt_ids.ndim == 3:
        # logger.warning(
        #     "Passing `txt_ids` 3d torch.Tensor is deprecated."
        #     "Please remove the batch dimension and pass it as a 2d torch Tensor"
        # )
        txt_ids = txt_ids[0]
    if img_ids.ndim == 3:
        # logger.warning(
        #     "Passing `img_ids` 3d torch.Tensor is deprecated."
        #     "Please remove the batch dimension and pass it as a 2d torch Tensor"
        # )
        img_ids = img_ids[0]

    ids = torch.cat((txt_ids, img_ids), dim=0)
    image_rotary_emb = self.pos_embed(ids)

    for index_block, block in enumerate(self.transformer_blocks):
        if torch.is_grad_enabled() and self.gradient_checkpointing:
            encoder_hidden_states, hidden_states = self._gradient_checkpointing_func(
                block,
                hidden_states,
                encoder_hidden_states,
                temb,
                image_rotary_emb,
            )

        else:
            encoder_hidden_states, hidden_states = block(
                hidden_states=hidden_states,
                encoder_hidden_states=encoder_hidden_states,
                temb=temb,
                image_rotary_emb=image_rotary_emb,
                joint_attention_kwargs=joint_attention_kwargs,
            )

        # controlnet residual
        if controlnet_block_samples is not None:
            interval_control = len(self.transformer_blocks) / len(controlnet_block_samples)
            interval_control = int(np.ceil(interval_control))
            # For Xlabs ControlNet.
            if controlnet_blocks_repeat:
                hidden_states = hidden_states + controlnet_block_samples[index_block % len(controlnet_block_samples)]
            else:
                hidden_states = hidden_states + controlnet_block_samples[index_block // interval_control]
    hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)

    for index_block, block in enumerate(self.single_transformer_blocks):
        if torch.is_grad_enabled() and self.gradient_checkpointing:
            hidden_states = self._gradient_checkpointing_func(
                block,
                hidden_states,
                temb,
                image_rotary_emb,
            )

        else:
            hidden_states = block(
                hidden_states=hidden_states,
                temb=temb,
                image_rotary_emb=image_rotary_emb,
                joint_attention_kwargs=joint_attention_kwargs,
            )

        # controlnet residual
        if controlnet_single_block_samples is not None:
            interval_control = len(self.single_transformer_blocks) / len(controlnet_single_block_samples)
            interval_control = int(np.ceil(interval_control))
            hidden_states[:, encoder_hidden_states.shape[1] :, ...] = (
                hidden_states[:, encoder_hidden_states.shape[1] :, ...]
                + controlnet_single_block_samples[index_block // interval_control]
            )

    hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...]

    hidden_states = self.norm_out(hidden_states, temb)
    output = self.proj_out(hidden_states)

    if USE_PEFT_BACKEND:
        # remove `lora_scale` from each PEFT layer
        unscale_lora_layers(self, lora_scale)

    if not return_dict:
        return (output,)

    return Transformer2DModelOutput(sample=output)