File size: 17,572 Bytes
42f2c22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
# //
# // Licensed under the Apache License, Version 2.0 (the "License");
# // you may not use this file except in compliance with the License.
# // You may obtain a copy of the License at
# //
# //     http://www.apache.org/licenses/LICENSE-2.0
# //
# // Unless required by applicable law or agreed to in writing, software
# // distributed under the License is distributed on an "AS IS" BASIS,
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# // See the License for the specific language governing permissions and
# // limitations under the License.

"""
Distributed ops for supporting sequence parallel.
"""

from collections import defaultdict
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
import torch
import torch.distributed as dist
from torch import Tensor

from common.cache import Cache
from common.distributed.advanced import (
    get_sequence_parallel_group,
    get_sequence_parallel_rank,
    get_sequence_parallel_world_size,
)

from .basic import get_device

_SEQ_DATA_BUF = defaultdict(lambda: [None, None, None])
_SEQ_DATA_META_SHAPES = defaultdict()
_SEQ_DATA_META_DTYPES = defaultdict()
_SEQ_DATA_ASYNC_COMMS = defaultdict(list)
_SYNC_BUFFER = defaultdict(dict)


def single_all_to_all(
    local_input: Tensor,
    scatter_dim: int,
    gather_dim: int,
    group: dist.ProcessGroup,
    async_op: bool = False,
):
    """
    A function to do all-to-all on a tensor
    """
    seq_world_size = dist.get_world_size(group)
    prev_scatter_dim = scatter_dim
    if scatter_dim != 0:
        local_input = local_input.transpose(0, scatter_dim)
        if gather_dim == 0:
            gather_dim = scatter_dim
        scatter_dim = 0

    inp_shape = list(local_input.shape)
    inp_shape[scatter_dim] = inp_shape[scatter_dim] // seq_world_size
    input_t = local_input.reshape(
        [seq_world_size, inp_shape[scatter_dim]] + inp_shape[scatter_dim + 1 :]
    ).contiguous()
    output = torch.empty_like(input_t)
    comm = dist.all_to_all_single(output, input_t, group=group, async_op=async_op)
    if async_op:
        # let user's code transpose & reshape
        return output, comm, prev_scatter_dim

    # first dim is seq_world_size, so we can split it directly
    output = torch.cat(output.split(1), dim=gather_dim + 1).squeeze(0)
    if prev_scatter_dim:
        output = output.transpose(0, prev_scatter_dim).contiguous()
    return output


def _all_to_all(
    local_input: Tensor,
    scatter_dim: int,
    gather_dim: int,
    group: dist.ProcessGroup,
):
    seq_world_size = dist.get_world_size(group)
    input_list = [
        t.contiguous() for t in torch.tensor_split(local_input, seq_world_size, scatter_dim)
    ]
    output_list = [torch.empty_like(input_list[0]) for _ in range(seq_world_size)]
    dist.all_to_all(output_list, input_list, group=group)
    return torch.cat(output_list, dim=gather_dim).contiguous()


class SeqAllToAll(torch.autograd.Function):
    @staticmethod
    def forward(
        ctx: Any,
        group: dist.ProcessGroup,
        local_input: Tensor,
        scatter_dim: int,
        gather_dim: int,
        async_op: bool,
    ) -> Tensor:
        ctx.group = group
        ctx.scatter_dim = scatter_dim
        ctx.gather_dim = gather_dim
        ctx.async_op = async_op
        if async_op:
            output, comm, prev_scatter_dim = single_all_to_all(
                local_input, scatter_dim, gather_dim, group, async_op=async_op
            )
            ctx.prev_scatter_dim = prev_scatter_dim
            return output, comm

        return _all_to_all(local_input, scatter_dim, gather_dim, group)

    @staticmethod
    def backward(ctx: Any, *grad_output: Tensor) -> Tuple[None, Tensor, None, None]:
        if ctx.async_op:
            input_t = torch.cat(grad_output[0].split(1), dim=ctx.gather_dim + 1).squeeze(0)
            if ctx.prev_scatter_dim:
                input_t = input_t.transpose(0, ctx.prev_scatter_dim)
        else:
            input_t = grad_output[0]
        return (
            None,
            _all_to_all(input_t, ctx.gather_dim, ctx.scatter_dim, ctx.group),
            None,
            None,
            None,
        )


class Slice(torch.autograd.Function):
    @staticmethod
    def forward(ctx: Any, group: dist.ProcessGroup, local_input: Tensor, dim: int) -> Tensor:
        ctx.group = group
        ctx.rank = dist.get_rank(group)
        seq_world_size = dist.get_world_size(group)
        ctx.seq_world_size = seq_world_size
        ctx.dim = dim
        dim_size = local_input.shape[dim]
        return local_input.split(dim_size // seq_world_size, dim=dim)[ctx.rank].contiguous()

    @staticmethod
    def backward(ctx: Any, grad_output: Tensor) -> Tuple[None, Tensor, None]:
        dim_size = list(grad_output.size())
        split_size = dim_size[0]
        dim_size[0] = dim_size[0] * ctx.seq_world_size
        output = torch.empty(dim_size, dtype=grad_output.dtype, device=torch.cuda.current_device())
        dist._all_gather_base(output, grad_output, group=ctx.group)
        return (None, torch.cat(output.split(split_size), dim=ctx.dim), None)


class Gather(torch.autograd.Function):
    @staticmethod
    def forward(
        ctx: Any,
        group: dist.ProcessGroup,
        local_input: Tensor,
        dim: int,
        grad_scale: Optional[bool] = False,
    ) -> Tensor:
        ctx.group = group
        ctx.rank = dist.get_rank(group)
        ctx.dim = dim
        ctx.grad_scale = grad_scale
        seq_world_size = dist.get_world_size(group)
        ctx.seq_world_size = seq_world_size
        dim_size = list(local_input.size())
        split_size = dim_size[0]
        ctx.part_size = dim_size[dim]
        dim_size[0] = dim_size[0] * seq_world_size
        output = torch.empty(dim_size, dtype=local_input.dtype, device=torch.cuda.current_device())
        dist._all_gather_base(output, local_input.contiguous(), group=ctx.group)
        return torch.cat(output.split(split_size), dim=dim)

    @staticmethod
    def backward(ctx: Any, grad_output: Tensor) -> Tuple[None, Tensor]:
        if ctx.grad_scale:
            grad_output = grad_output * ctx.seq_world_size
        return (
            None,
            grad_output.split(ctx.part_size, dim=ctx.dim)[ctx.rank].contiguous(),
            None,
            None,
        )


def gather_seq_scatter_heads_qkv(
    qkv_tensor: Tensor,
    *,
    seq_dim: int,
    qkv_shape: Optional[Tensor] = None,
    cache: Cache = Cache(disable=True),
    restore_shape: bool = True,
):
    """
    A func to sync splited qkv tensor
    qkv_tensor: the tensor we want to do alltoall with. The last dim must
        be the projection_idx, which we will split into 3 part. After
        spliting, the gather idx will be projecttion_idx + 1
    seq_dim: gather_dim for all2all comm
    restore_shape: if True, output will has the same shape length as input
    """
    group = get_sequence_parallel_group()
    if not group:
        return qkv_tensor
    world = get_sequence_parallel_world_size()
    orig_shape = qkv_tensor.shape
    scatter_dim = qkv_tensor.dim()
    bef_all2all_shape = list(orig_shape)
    qkv_proj_dim = bef_all2all_shape[-1]
    bef_all2all_shape = bef_all2all_shape[:-1] + [3, qkv_proj_dim // 3]
    qkv_tensor = qkv_tensor.view(bef_all2all_shape)
    qkv_tensor = SeqAllToAll.apply(group, qkv_tensor, scatter_dim, seq_dim, False)
    if restore_shape:
        out_shape = list(orig_shape)
        out_shape[seq_dim] *= world
        out_shape[-1] = qkv_proj_dim // world
        qkv_tensor = qkv_tensor.view(out_shape)

    # remove padding
    if qkv_shape is not None:
        unpad_dim_size = cache(
            "unpad_dim_size", lambda: torch.sum(torch.prod(qkv_shape, dim=-1)).item()
        )
        if unpad_dim_size % world != 0:
            padding_size = qkv_tensor.size(seq_dim) - unpad_dim_size
            qkv_tensor = _unpad_tensor(qkv_tensor, seq_dim, padding_size)
    return qkv_tensor


def slice_inputs(x: Tensor, dim: int, padding: bool = True):
    """
    A func to slice the input sequence in sequence parallel
    """
    group = get_sequence_parallel_group()
    if group is None:
        return x
    sp_rank = get_sequence_parallel_rank()
    sp_world = get_sequence_parallel_world_size()
    dim_size = x.shape[dim]
    unit = (dim_size + sp_world - 1) // sp_world
    if padding and dim_size % sp_world:
        padding_size = sp_world - (dim_size % sp_world)
        x = _pad_tensor(x, dim, padding_size)
    slc = [slice(None)] * len(x.shape)
    slc[dim] = slice(unit * sp_rank, unit * (sp_rank + 1))
    return x[slc]


def remove_seqeunce_parallel_padding(x: Tensor, dim: int, unpad_dim_size: int):
    """
    A func to remove the padding part of the tensor based on its original shape
    """
    group = get_sequence_parallel_group()
    if group is None:
        return x
    sp_world = get_sequence_parallel_world_size()
    if unpad_dim_size % sp_world == 0:
        return x
    padding_size = sp_world - (unpad_dim_size % sp_world)
    assert (padding_size + unpad_dim_size) % sp_world == 0
    return _unpad_tensor(x, dim=dim, padding_size=padding_size)


def gather_heads_scatter_seq(x: Tensor, head_dim: int, seq_dim: int) -> Tensor:
    """
    A func to sync attention result with alltoall in sequence parallel
    """
    group = get_sequence_parallel_group()
    if not group:
        return x
    dim_size = x.size(seq_dim)
    sp_world = get_sequence_parallel_world_size()
    if dim_size % sp_world != 0:
        padding_size = sp_world - (dim_size % sp_world)
        x = _pad_tensor(x, seq_dim, padding_size)
    return SeqAllToAll.apply(group, x, seq_dim, head_dim, False)


def gather_seq_scatter_heads(x: Tensor, seq_dim: int, head_dim: int) -> Tensor:
    """
    A func to sync embedding input with alltoall in sequence parallel
    """
    group = get_sequence_parallel_group()
    if not group:
        return x
    return SeqAllToAll.apply(group, x, head_dim, seq_dim, False)


def scatter_heads(x: Tensor, dim: int) -> Tensor:
    """
    A func to split heads before attention in sequence parallel
    """
    group = get_sequence_parallel_group()
    if not group:
        return x
    return Slice.apply(group, x, dim)


def gather_heads(x: Tensor, dim: int, grad_scale: Optional[bool] = False) -> Tensor:
    """
    A func to gather heads for the attention result in sequence parallel
    """
    group = get_sequence_parallel_group()
    if not group:
        return x
    return Gather.apply(group, x, dim, grad_scale)


def gather_outputs(
    x: Tensor,
    *,
    gather_dim: int,
    padding_dim: Optional[int] = None,
    unpad_shape: Optional[Tensor] = None,
    cache: Cache = Cache(disable=True),
    scale_grad=True,
):
    """
    A func to gather the outputs for the model result in sequence parallel
    """
    group = get_sequence_parallel_group()
    if not group:
        return x
    x = Gather.apply(group, x, gather_dim, scale_grad)
    if padding_dim is not None:
        unpad_dim_size = cache(
            "unpad_dim_size", lambda: torch.sum(torch.prod(unpad_shape, dim=1)).item()
        )
        x = remove_seqeunce_parallel_padding(x, padding_dim, unpad_dim_size)
    return x


def _pad_tensor(x: Tensor, dim: int, padding_size: int):
    shape = list(x.shape)
    shape[dim] = padding_size
    pad = torch.zeros(shape, dtype=x.dtype, device=x.device)
    return torch.cat([x, pad], dim=dim)


def _unpad_tensor(x: Tensor, dim: int, padding_size):
    slc = [slice(None)] * len(x.shape)
    slc[dim] = slice(0, -padding_size)
    return x[slc]


def _broadcast_data(data, shape, dtype, src, group, async_op):
    comms = []
    if isinstance(data, (list, tuple)):
        for i, sub_shape in enumerate(shape):
            comms += _broadcast_data(data[i], sub_shape, dtype[i], src, group, async_op)
    elif isinstance(data, dict):
        for key, sub_data in data.items():
            comms += _broadcast_data(sub_data, shape[key], dtype[key], src, group, async_op)
    elif isinstance(data, Tensor):
        comms.append(dist.broadcast(data, src=src, group=group, async_op=async_op))
    return comms


def _traverse(data: Any, op: Callable) -> Union[None, List, Dict, Any]:
    if isinstance(data, (list, tuple)):
        return [_traverse(sub_data, op) for sub_data in data]
    elif isinstance(data, dict):
        return {key: _traverse(sub_data, op) for key, sub_data in data.items()}
    elif isinstance(data, Tensor):
        return op(data)
    else:
        return None


def _get_shapes(data):
    return _traverse(data, op=lambda x: x.shape)


def _get_dtypes(data):
    return _traverse(data, op=lambda x: x.dtype)


def _construct_broadcast_buffer(shapes, dtypes, device):
    if isinstance(shapes, torch.Size):
        return torch.empty(shapes, dtype=dtypes, device=device)

    if isinstance(shapes, (list, tuple)):
        buffer = []
        for i, sub_shape in enumerate(shapes):
            buffer.append(_construct_broadcast_buffer(sub_shape, dtypes[i], device))
    elif isinstance(shapes, dict):
        buffer = {}
        for key, sub_shape in shapes.items():
            buffer[key] = _construct_broadcast_buffer(sub_shape, dtypes[key], device)
    else:
        return None
    return buffer


class SPDistForward:
    """A forward tool to sync different result across sp group

    Args:
        module: a function or module to process users input
        sp_step: current training step to judge which rank to broadcast its result to all
        name: a distinct str to save meta and async comm
        comm_shape: if different ranks have different shape, mark this arg to True
        device: the device for current rank, can be empty
    """

    def __init__(
        self,
        name: str,
        comm_shape: bool,
        device: torch.device = None,
    ):
        self.name = name
        self.comm_shape = comm_shape
        if device:
            self.device = device
        else:
            self.device = get_device()

    def __call__(self, inputs) -> Any:
        group = get_sequence_parallel_group()
        if not group:
            yield inputs
        else:
            device = self.device
            sp_world = get_sequence_parallel_world_size()
            sp_rank = get_sequence_parallel_rank()
            for local_step in range(sp_world):
                src_rank = dist.get_global_rank(group, local_step)
                is_src = sp_rank == local_step
                local_shapes = []
                local_dtypes = []
                if local_step == 0:
                    local_result = inputs
                    _SEQ_DATA_BUF[self.name][-1] = local_result
                    local_shapes = _get_shapes(local_result)
                    local_dtypes = _get_dtypes(local_result)
                    if self.comm_shape:
                        group_shapes_lists = [None] * sp_world
                        dist.all_gather_object(group_shapes_lists, local_shapes, group=group)
                        _SEQ_DATA_META_SHAPES[self.name] = group_shapes_lists
                    else:
                        _SEQ_DATA_META_SHAPES[self.name] = [local_shapes] * sp_world
                    _SEQ_DATA_META_DTYPES[self.name] = local_dtypes
                shapes = _SEQ_DATA_META_SHAPES[self.name][local_step]
                dtypes = _SEQ_DATA_META_DTYPES[self.name]
                buf_id = local_step % 2
                if local_step == 0:
                    sync_data = (
                        local_result
                        if is_src
                        else _construct_broadcast_buffer(shapes, dtypes, device)
                    )
                    _broadcast_data(sync_data, shapes, dtypes, src_rank, group, False)
                    _SEQ_DATA_BUF[self.name][buf_id] = sync_data

                # wait for async comm ops
                if _SEQ_DATA_ASYNC_COMMS[self.name]:
                    for comm in _SEQ_DATA_ASYNC_COMMS[self.name]:
                        comm.wait()
                # before return the sync result, do async broadcast for next batch
                if local_step < sp_world - 1:
                    next_buf_id = 1 - buf_id
                    shapes = _SEQ_DATA_META_SHAPES[self.name][local_step + 1]
                    src_rank = dist.get_global_rank(group, local_step + 1)
                    is_src = sp_rank == local_step + 1
                    next_sync_data = (
                        _SEQ_DATA_BUF[self.name][-1]
                        if is_src
                        else _construct_broadcast_buffer(shapes, dtypes, device)
                    )
                    _SEQ_DATA_ASYNC_COMMS[self.name] = _broadcast_data(
                        next_sync_data, shapes, dtypes, src_rank, group, True
                    )
                    _SEQ_DATA_BUF[self.name][next_buf_id] = next_sync_data
                yield _SEQ_DATA_BUF[self.name][buf_id]


sync_inputs = SPDistForward(name="bef_fwd", comm_shape=True)


def sync_data(data, sp_idx, name="tmp"):
    group = get_sequence_parallel_group()
    if group is None:
        return data
    # if sp_idx in _SYNC_BUFFER[name]:
    #     return _SYNC_BUFFER[name][sp_idx]
    sp_rank = get_sequence_parallel_rank()
    src_rank = dist.get_global_rank(group, sp_idx)
    objects = [data] if sp_rank == sp_idx else [None]
    dist.broadcast_object_list(objects, src=src_rank, group=group)
    # _SYNC_BUFFER[name] = {sp_idx: objects[0]}
    return objects[0]