File size: 18,930 Bytes
42f2c22
 
 
 
 
 
 
 
 
 
 
 
 
6cbcc74
a6ea067
6cbcc74
42f2c22
 
 
 
 
 
 
 
 
 
c5715dc
42f2c22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6237836
e3b4db8
 
367bee6
67c0e7b
 
367bee6
e276ced
 
 
 
e3b4db8
de5b2a1
 
 
 
 
 
e3b4db8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42f2c22
 
 
 
 
 
 
 
 
 
 
367bee6
d62797d
42f2c22
 
96af013
42f2c22
 
 
 
 
 
 
d62797d
367bee6
 
d62797d
367bee6
42f2c22
 
 
 
 
 
 
 
 
 
 
 
1fd3071
 
 
42f2c22
273be34
42f2c22
 
 
 
 
 
1fd3071
 
96af013
42f2c22
 
 
 
 
 
273be34
42f2c22
 
512f3c8
42f2c22
 
 
 
 
 
 
 
 
 
 
 
512f3c8
42f2c22
 
512f3c8
42f2c22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
273be34
42f2c22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
273be34
2785165
42f2c22
1957115
42f2c22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
79c4b07
 
 
42f2c22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09fd3d7
 
42f2c22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9102eb
 
42f2c22
 
42392fd
42f2c22
 
f9ea190
42f2c22
f9ea190
42f2c22
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9102eb
42f2c22
 
 
 
512f3c8
42f2c22
 
 
 
 
67c0e7b
42f2c22
67c0e7b
42f2c22
67c0e7b
 
42f2c22
 
512f3c8
42f2c22
512f3c8
42f2c22
 
67c0e7b
42f2c22
 
 
f9ea190
 
 
 
 
 
 
 
 
 
 
 
 
 
42f2c22
f9ea190
 
 
 
 
 
 
 
 
42f2c22
7fe120b
2785165
7fe120b
 
076d301
42f2c22
8207b45
7fe120b
42f2c22
 
0d8f0d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
161fcf3
 
0d8f0d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
09fd3d7
25e6160
0d8f0d4
 
 
 
 
 
 
ad4fb65
 
 
 
0d8f0d4
ad4fb65
0d8f0d4
ad4fb65
 
 
 
0d8f0d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42f2c22
ab75ac1
42f2c22
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
# // Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
# //
# // Licensed under the Apache License, Version 2.0 (the "License");
# // you may not use this file except in compliance with the License.
# // You may obtain a copy of the License at
# //
# //     http://www.apache.org/licenses/LICENSE-2.0
# //
# // Unless required by applicable law or agreed to in writing, software
# // distributed under the License is distributed on an "AS IS" BASIS,
# // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# // See the License for the specific language governing permissions and
# // limitations under the License.
import spaces
import subprocess

import os
import torch
import mediapy
from einops import rearrange
from omegaconf import OmegaConf
print(os.getcwd())
import datetime
from tqdm import tqdm
import gc

from data.image.transforms.divisible_crop import DivisibleCrop
from data.image.transforms.na_resize import NaResize
from data.video.transforms.rearrange import Rearrange
if os.path.exists("./projects/video_diffusion_sr/color_fix.py"):
    from projects.video_diffusion_sr.color_fix import wavelet_reconstruction
    use_colorfix=True
else:
    use_colorfix = False
    print('Note!!!!!! Color fix is not avaliable!')
from torchvision.transforms import Compose, Lambda, Normalize
from torchvision.io.video import read_video
import argparse

from common.distributed import (
    get_device,
    init_torch,
)

from common.distributed.advanced import (
    get_data_parallel_rank,
    get_data_parallel_world_size,
    get_sequence_parallel_rank,
    get_sequence_parallel_world_size,
    init_sequence_parallel,
)

from projects.video_diffusion_sr.infer import VideoDiffusionInfer
from common.config import load_config
from common.distributed.ops import sync_data
from common.seed import set_seed
from common.partition import partition_by_groups, partition_by_size

import gradio as gr
from pathlib import Path
from urllib.parse import urlparse
from torch.hub import download_url_to_file, get_dir
import shlex
import uuid


os.environ["MASTER_ADDR"] = "127.0.0.1"
os.environ["MASTER_PORT"] = "12355"
os.environ["RANK"] = str(0)
os.environ["WORLD_SIZE"] = str(1)

subprocess.run(
    "pip install flash-attn --no-build-isolation",
    env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
    shell=True,
)

def load_file_from_url(url, model_dir=None, progress=True, file_name=None):
    """Load file form http url, will download models if necessary.

    Reference: https://github.com/1adrianb/face-alignment/blob/master/face_alignment/utils.py

    Args:
        url (str): URL to be downloaded.
        model_dir (str): The path to save the downloaded model. Should be a full path. If None, use pytorch hub_dir.
            Default: None.
        progress (bool): Whether to show the download progress. Default: True.
        file_name (str): The downloaded file name. If None, use the file name in the url. Default: None.

    Returns:
        str: The path to the downloaded file.
    """
    if model_dir is None:  # use the pytorch hub_dir
        hub_dir = get_dir()
        model_dir = os.path.join(hub_dir, 'checkpoints')

    os.makedirs(model_dir, exist_ok=True)

    parts = urlparse(url)
    filename = os.path.basename(parts.path)
    if file_name is not None:
        filename = file_name
    cached_file = os.path.abspath(os.path.join(model_dir, filename))
    if not os.path.exists(cached_file):
        print(f'Downloading: "{url}" to {cached_file}\n')
        download_url_to_file(url, cached_file, hash_prefix=None, progress=progress)
    return cached_file


# os.system("pip freeze")
ckpt_dir = Path('./ckpts')
if not ckpt_dir.exists():
	ckpt_dir.mkdir()

pretrain_model_url = {
	'vae': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/ema_vae.pth',
	'dit': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/seedvr2_ema_3b.pth',
    'pos_emb': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/pos_emb.pt',
    'neg_emb': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/neg_emb.pt',
    'apex': 'https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/apex-0.1-cp310-cp310-linux_x86_64.whl'
}
# download weights
if not os.path.exists('./ckpts/seedvr2_ema_3b.pth'):
	load_file_from_url(url=pretrain_model_url['dit'], model_dir='./ckpts/', progress=True, file_name=None)
if not os.path.exists('./ckpts/ema_vae.pth'):
	load_file_from_url(url=pretrain_model_url['vae'], model_dir='./ckpts/', progress=True, file_name=None)
if not os.path.exists('./pos_emb.pt'):
	load_file_from_url(url=pretrain_model_url['pos_emb'], model_dir='./', progress=True, file_name=None)
if not os.path.exists('./neg_emb.pt'):
	load_file_from_url(url=pretrain_model_url['neg_emb'], model_dir='./', progress=True, file_name=None)
if not os.path.exists('./apex-0.1-cp310-cp310-linux_x86_64.whl'):
	load_file_from_url(url=pretrain_model_url['apex'], model_dir='./', progress=True, file_name=None)

subprocess.run(shlex.split("pip install apex-0.1-cp310-cp310-linux_x86_64.whl"))
print(f"✅ setup completed Apex")

# download images
torch.hub.download_url_to_file(
	'https://huggingface.co/datasets/Iceclear/SeedVR_VideoDemos/resolve/main/seedvr_videos_crf23/aigc1k/23_1_lq.mp4',
	'01.mp4')
torch.hub.download_url_to_file(
	'https://huggingface.co/datasets/Iceclear/SeedVR_VideoDemos/resolve/main/seedvr_videos_crf23/aigc1k/28_1_lq.mp4',
	'02.mp4')
torch.hub.download_url_to_file(
	'https://huggingface.co/datasets/Iceclear/SeedVR_VideoDemos/resolve/main/seedvr_videos_crf23/aigc1k/2_1_lq.mp4',
	'03.mp4')

def configure_sequence_parallel(sp_size):
    if sp_size > 1:
        init_sequence_parallel(sp_size)

@spaces.GPU(duration=100)
def configure_runner(sp_size):
    config_path = os.path.join('./configs_3b', 'main.yaml')
    config = load_config(config_path)
    runner = VideoDiffusionInfer(config)
    OmegaConf.set_readonly(runner.config, False)
    
    init_torch(cudnn_benchmark=False, timeout=datetime.timedelta(seconds=3600))
    configure_sequence_parallel(sp_size)
    runner.configure_dit_model(device="cuda", checkpoint='./ckpts/seedvr2_ema_3b.pth')
    runner.configure_vae_model()
    # Set memory limit.
    if hasattr(runner.vae, "set_memory_limit"):
        runner.vae.set_memory_limit(**runner.config.vae.memory_limit)
    return runner

@spaces.GPU(duration=100)
def generation_step(runner, text_embeds_dict, cond_latents):
    def _move_to_cuda(x):
        return [i.to(torch.device("cuda")) for i in x]

    noises = [torch.randn_like(latent) for latent in cond_latents]
    aug_noises = [torch.randn_like(latent) for latent in cond_latents]
    print(f"Generating with noise shape: {noises[0].size()}.")
    noises, aug_noises, cond_latents = sync_data((noises, aug_noises, cond_latents), 0)
    noises, aug_noises, cond_latents = list(
        map(lambda x: _move_to_cuda(x), (noises, aug_noises, cond_latents))
    )
    cond_noise_scale = 0.1

    def _add_noise(x, aug_noise):
        t = (
            torch.tensor([1000.0], device=torch.device("cuda"))
            * cond_noise_scale
        )
        shape = torch.tensor(x.shape[1:], device=torch.device("cuda"))[None]
        t = runner.timestep_transform(t, shape)
        print(
            f"Timestep shifting from"
            f" {1000.0 * cond_noise_scale} to {t}."
        )
        x = runner.schedule.forward(x, aug_noise, t)
        return x

    conditions = [
        runner.get_condition(
            noise,
            task="sr",
            latent_blur=_add_noise(latent_blur, aug_noise),
        )
        for noise, aug_noise, latent_blur in zip(noises, aug_noises, cond_latents)
    ]

    with torch.no_grad(), torch.autocast("cuda", torch.bfloat16, enabled=True):
        video_tensors = runner.inference(
            noises=noises,
            conditions=conditions,
            dit_offload=False,
            **text_embeds_dict,
        )

    samples = [
        (
            rearrange(video[:, None], "c t h w -> t c h w")
            if video.ndim == 3
            else rearrange(video, "c t h w -> t c h w")
        )
        for video in video_tensors
    ]
    del video_tensors

    return samples

@spaces.GPU(duration=100)
def generation_loop(video_path='./test_videos', seed=666, fps_out=12, batch_size=1, cfg_scale=1.0, cfg_rescale=0.0, sample_steps=1, res_h=1280, res_w=720, sp_size=1):
    runner = configure_runner(1)
    output_dir = 'output/' + str(uuid.uuid4()) + '.mp4'
    def _build_pos_and_neg_prompt():
        # read positive prompt
        positive_text = "Cinematic, High Contrast, highly detailed, taken using a Canon EOS R camera, \
        hyper detailed photo - realistic maximum detail, 32k, Color Grading, ultra HD, extreme meticulous detailing, \
        skin pore detailing, hyper sharpness, perfect without deformations."
        # read negative prompt
        negative_text = "painting, oil painting, illustration, drawing, art, sketch, oil painting, cartoon, \
        CG Style, 3D render, unreal engine, blurring, dirty, messy, worst quality, low quality, frames, watermark, \
        signature, jpeg artifacts, deformed, lowres, over-smooth"
        return positive_text, negative_text

    def _build_test_prompts(video_path):
        positive_text, negative_text = _build_pos_and_neg_prompt()
        original_videos = []
        prompts = {}
        video_list = os.listdir(video_path)
        for f in video_list:
            # if f.endswith(".mp4"):
            original_videos.append(f)
            prompts[f] = positive_text
        print(f"Total prompts to be generated: {len(original_videos)}")
        return original_videos, prompts, negative_text

    def _extract_text_embeds():
        # Text encoder forward.
        positive_prompts_embeds = []
        for texts_pos in tqdm(original_videos_local):
            text_pos_embeds = torch.load('pos_emb.pt')
            text_neg_embeds = torch.load('neg_emb.pt')

            positive_prompts_embeds.append(
                {"texts_pos": [text_pos_embeds], "texts_neg": [text_neg_embeds]}
            )
        gc.collect()
        torch.cuda.empty_cache()
        return positive_prompts_embeds

    def cut_videos(videos, sp_size):
        if videos.size(1) > 121:
            videos = videos[:, :121]
        t = videos.size(1)
        if t <= 4 * sp_size:
            print(f"Cut input video size: {videos.size()}")
            padding = [videos[:, -1].unsqueeze(1)] * (4 * sp_size - t + 1)
            padding = torch.cat(padding, dim=1)
            videos = torch.cat([videos, padding], dim=1)
            return videos
        if (t - 1) % (4 * sp_size) == 0:
            return videos
        else:
            padding = [videos[:, -1].unsqueeze(1)] * (
                4 * sp_size - ((t - 1) % (4 * sp_size))
            )
            padding = torch.cat(padding, dim=1)
            videos = torch.cat([videos, padding], dim=1)
            assert (videos.size(1) - 1) % (4 * sp_size) == 0
            return videos

    # classifier-free guidance
    runner.config.diffusion.cfg.scale = cfg_scale
    runner.config.diffusion.cfg.rescale = cfg_rescale
    # sampling steps
    runner.config.diffusion.timesteps.sampling.steps = sample_steps
    runner.configure_diffusion()

    # set random seed
    set_seed(seed, same_across_ranks=True)
    os.makedirs('output/', exist_ok=True)
    tgt_path = 'output/'

    # get test prompts
    original_videos = [video_path.split('/')[-1]]

    # divide the prompts into different groups
    original_videos_group = original_videos
    # store prompt mapping
    original_videos_local = original_videos_group
    original_videos_local = partition_by_size(original_videos_local, batch_size)

    # pre-extract the text embeddings
    positive_prompts_embeds = _extract_text_embeds()

    video_transform = Compose(
        [
            NaResize(
                resolution=(
                    res_h * res_w
                )
                ** 0.5,
                mode="area",
                # Upsample image, model only trained for high res.
                downsample_only=False,
            ),
            Lambda(lambda x: torch.clamp(x, 0.0, 1.0)),
            DivisibleCrop((16, 16)),
            Normalize(0.5, 0.5),
            Rearrange("t c h w -> c t h w"),
        ]
    )

    # generation loop
    for videos, text_embeds in tqdm(zip(original_videos_local, positive_prompts_embeds)):
        # read condition latents
        cond_latents = []
        for video in videos:
            video = (
                read_video(
                   os.path.join(video_path), output_format="TCHW"
                )[0]
                / 255.0
            )
            print(f"Read video size: {video.size()}")
            cond_latents.append(video_transform(video.to(torch.device("cuda"))))

        ori_lengths = [video.size(1) for video in cond_latents]
        input_videos = cond_latents
        cond_latents = [cut_videos(video, sp_size) for video in cond_latents]

        # runner.dit.to("cpu")
        print(f"Encoding videos: {list(map(lambda x: x.size(), cond_latents))}")
        # runner.vae.to(torch.device("cuda"))
        cond_latents = runner.vae_encode(cond_latents)
        # runner.vae.to("cpu")
        # runner.dit.to(torch.device("cuda"))

        for i, emb in enumerate(text_embeds["texts_pos"]):
            text_embeds["texts_pos"][i] = emb.to(torch.device("cuda"))
        for i, emb in enumerate(text_embeds["texts_neg"]):
            text_embeds["texts_neg"][i] = emb.to(torch.device("cuda"))

        samples = generation_step(runner, text_embeds, cond_latents=cond_latents)
        # runner.dit.to("cpu")
        del cond_latents

        # dump samples to the output directory
        for path, input, sample, ori_length in zip(
            videos, input_videos, samples, ori_lengths
        ):
            if ori_length < sample.shape[0]:
                sample = sample[:ori_length]
            # color fix
            input = (
                rearrange(input[:, None], "c t h w -> t c h w")
                if input.ndim == 3
                else rearrange(input, "c t h w -> t c h w")
            )
            if use_colorfix:
                sample = wavelet_reconstruction(
                    sample.to("cpu"), input[: sample.size(0)].to("cpu")
                )
            else:
                sample = sample.to("cpu")
            sample = (
                rearrange(sample[:, None], "t c h w -> t h w c")
                if sample.ndim == 3
                else rearrange(sample, "t c h w -> t h w c")
            )
            sample = sample.clip(-1, 1).mul_(0.5).add_(0.5).mul_(255).round()
            sample = sample.to(torch.uint8).numpy()

            mediapy.write_video(
                output_dir, sample, fps=fps_out
            )

        # print(f"Generated video size: {sample.shape}")
        gc.collect()
        torch.cuda.empty_cache()
        return output_dir, output_dir


with gr.Blocks(title="SeedVR2: One-Step Video Restoration via Diffusion Adversarial Post-Training") as demo:
    # Top logo and title
    gr.HTML("""
        <div style='text-align:center; margin-bottom: 10px;'>
            <img src='https://huggingface.co/ByteDance-Seed/SeedVR2-3B/resolve/main/assets/seedvr_logo.png' style='height:40px;' alt='SeedVR logo'/>
        </div>
        <p><b>Official Gradio demo</b> for 
        <a href='https://github.com/ByteDance-Seed/SeedVR' target='_blank'>
        <b>SeedVR2: One-Step Video Restoration via Diffusion Adversarial Post-Training</b></a>.<br>
        🔥 <b>SeedVR2</b> is a one-step image and video restoration algorithm for real-world and AIGC content.
        </p>
    """)

    # Interface
    with gr.Row():
        input_video = gr.Video(label="Upload a video")
        seed = gr.Number(label="Seeds", value=666)
        fps = gr.Number(label="fps", value=24)

    with gr.Row():
        output_video = gr.Video(label="Output")
        download_link = gr.File(label="Download the output")

    run_button = gr.Button("Run")
    run_button.click(fn=generation_loop, inputs=[input_video, seed, fps], outputs=[output_video, download_link])

    # Examples
    gr.Examples(
        examples=[
            ["./01.mp4", 4, 24],
            ["./02.mp4", 4, 24],
            ["./03.mp4", 4, 24],
        ],
        inputs=[input_video, seed, fps]
    )

    # Article/Footer
    gr.HTML("""
        <hr>
        <p>If you find SeedVR helpful, please ⭐ the 
        <a href='https://github.com/ByteDance-Seed/SeedVR' target='_blank'>GitHub repository</a>:</p>

        <a href="https://github.com/ByteDance-Seed/SeedVR" target="_blank">
            <img src="https://img.shields.io/github/stars/ByteDance-Seed/SeedVR?style=social" alt="GitHub Stars">
        </a>

        <h4>Notice</h4>
        <p>This demo supports up to <b>720p</b> and <b>121 frames</b>.  
        For other use cases (image restoration, video resolutions beyond 720p, etc), check the <a href='https://github.com/ByteDance-Seed/SeedVR' target='_blank'>GitHub repo</a>.</p>

        <h4>Limitations</h4>
        <p>May fail on heavy degradations or small-motion AIGC clips, causing oversharpening or poor restoration.</p>

        <h4>Citation</h4>
        <pre style="font-size: 12px;">
        @article{wang2025seedvr2,
            title={SeedVR2: One-Step Video Restoration via Diffusion Adversarial Post-Training},
            author={Wang, Jianyi and Lin, Shanchuan and Lin, Zhijie and Ren, Yuxi and Wei, Meng and Yue, Zongsheng and Zhou, Shangchen and Chen, Hao and Zhao, Yang and Yang, Ceyuan and Xiao, Xuefeng and Loy, Chen Change and Jiang, Lu},
            booktitle={arXiv preprint arXiv:2506.05301},
            year={2025}
        }

        @inproceedings{wang2025seedvr,
            title={SeedVR: Seeding Infinity in Diffusion Transformer Towards Generic Video Restoration},
            author={Wang, Jianyi and Lin, Zhijie and Wei, Meng and Zhao, Yang and Yang, Ceyuan and Loy, Chen Change and Jiang, Lu},
            booktitle={CVPR},
            year={2025}
        }
        </pre>

        <h4>License</h4>
        <p>Licensed under the 
        <a href="http://www.apache.org/licenses/LICENSE-2.0" target="_blank">Apache 2.0 License</a>.</p>

        <h4>Contact</h4>
        <p>Email: <b>iceclearwjy@gmail.com</b></p>

        <p>
        <a href="https://twitter.com/Iceclearwjy">
        <img src="https://img.shields.io/twitter/follow/Iceclearwjy?label=%40Iceclearwjy&style=social" alt="Twitter Follow">
        </a>
        <a href="https://github.com/IceClear">
        <img src="https://img.shields.io/github/followers/IceClear?style=social" alt="GitHub Follow">
        </a>
        </p>

        <p style="text-align:center;">
        <img src="https://visitor-badge.laobi.icu/badge?page_id=ByteDance-Seed/SeedVR" alt="visitors">
        </p>
    """)

demo.queue()
demo.launch()