File size: 909 Bytes
619fb86
 
00dd567
619fb86
 
6f6379e
619fb86
00dd567
 
 
 
619fb86
00dd567
 
 
 
 
619fb86
 
 
 
 
1512feb
0b03db9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
import gradio as gr
from sklearn.feature_extraction.text import CountVectorizer
from sklearn.feature_extraction.text import TfidfVectorizer
import joblib

vectorizer = joblib.load('./vectorizer.pkl')
nb_classifier = joblib.load('./nb_classifier.pkl')
tfidf_vectorizer = joblib.load('./tfidf_vectorizer.pkl')
random_forest = joblib.load('./random_forest.pkl')

def classify(text,choice):
  corpus=[text]
  features = vectorizer.transform(corpus).toarray()
  if(choice == 1):
      prediction = nb_classifier.predict(features)
  elif(choice == 2):
      prediction = random_forest.predict(features)
  if(prediction == 1):
     return "Fake News"
  else:
     return "Not Fake News"

GUI = gr.Interface(inputs = ['text',gr.radio(choices = [('Naive Bayes',1),'(Random Classifier',2)], value = 1, label = "Model") ], outputs = ['text'], fn = classify, title = "Fake News Detection System")
GUI.launch(debug = True)