File size: 21,315 Bytes
ca54a52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
"""
Psychrometric module for HVAC Load Calculator.
This module implements psychrometric calculations for air properties.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 1.
"""

from typing import Dict, List, Any, Optional, Tuple
import math
import numpy as np

# Constants
ATMOSPHERIC_PRESSURE = 101325  # Standard atmospheric pressure in Pa
WATER_MOLECULAR_WEIGHT = 18.01534  # kg/kmol
DRY_AIR_MOLECULAR_WEIGHT = 28.9645  # kg/kmol
UNIVERSAL_GAS_CONSTANT = 8314.462618  # J/(kmol·K)
GAS_CONSTANT_DRY_AIR = UNIVERSAL_GAS_CONSTANT / DRY_AIR_MOLECULAR_WEIGHT  # J/(kg·K)
GAS_CONSTANT_WATER_VAPOR = UNIVERSAL_GAS_CONSTANT / WATER_MOLECULAR_WEIGHT  # J/(kg·K)


class Psychrometrics:
    """Class for psychrometric calculations."""
    
    @staticmethod
    def validate_inputs(t_db: float, rh: Optional[float] = None, p_atm: Optional[float] = None) -> None:
        """
        Validate input parameters for psychrometric calculations.
        
        Args:
            t_db: Dry-bulb temperature in °C
            rh: Relative humidity in % (0-100), optional
            p_atm: Atmospheric pressure in Pa, optional
            
        Raises:
            ValueError: If inputs are invalid
        """
        if not -50 <= t_db <= 60:
            raise ValueError(f"Temperature {t_db}°C must be between -50°C and 60°C")
        if rh is not None and not 0 <= rh <= 100:
            raise ValueError(f"Relative humidity {rh}% must be between 0 and 100%")
        if p_atm is not None and p_atm <= 0:
            raise ValueError(f"Atmospheric pressure {p_atm} Pa must be positive")

    @staticmethod
    def saturation_pressure(t_db: float) -> float:
        """
        Calculate saturation pressure of water vapor.
        Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 1, Equations 5 and 6.
        
        Args:
            t_db: Dry-bulb temperature in °C
            
        Returns:
            Saturation pressure in Pa
        """
        Psychrometrics.validate_inputs(t_db)
        
        # Convert temperature to Kelvin
        t_k = t_db + 273.15
        
        # ASHRAE Fundamentals 2017 Chapter 1, Equation 5 & 6
        if t_db >= 0:
            # Equation 5 for temperatures above freezing
            c1 = -5.8002206e3
            c2 = 1.3914993
            c3 = -4.8640239e-2
            c4 = 4.1764768e-5
            c5 = -1.4452093e-8
            c6 = 6.5459673
        else:
            # Equation 6 for temperatures below freezing
            c1 = -5.6745359e3
            c2 = 6.3925247
            c3 = -9.6778430e-3
            c4 = 6.2215701e-7
            c5 = 2.0747825e-9
            c6 = -9.4840240e-13
            c7 = 4.1635019
        
        # Calculate natural log of saturation pressure in Pa
        if t_db >= 0:
            ln_p_ws = c1 / t_k + c2 + c3 * t_k + c4 * t_k**2 + c5 * t_k**3 + c6 * math.log(t_k)
        else:
            ln_p_ws = c1 / t_k + c2 + c3 * t_k + c4 * t_k**2 + c5 * t_k**3 + c6 * t_k**4 + c7 * math.log(t_k)
        
        # Convert from natural log to actual pressure in Pa
        p_ws = math.exp(ln_p_ws)
        
        return p_ws
    
    @staticmethod
    def humidity_ratio(t_db: float, rh: float, p_atm: float = ATMOSPHERIC_PRESSURE) -> float:
        """
        Calculate humidity ratio (mass of water vapor per unit mass of dry air).
        Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 1, Equation 20.
        
        Args:
            t_db: Dry-bulb temperature in °C
            rh: Relative humidity (0-100)
            p_atm: Atmospheric pressure in Pa (default: standard atmospheric pressure)
            
        Returns:
            Humidity ratio in kg water vapor / kg dry air
        """
        Psychrometrics.validate_inputs(t_db, rh, p_atm)
        
        # Convert relative humidity to decimal
        rh_decimal = rh / 100.0
        
        # Calculate saturation pressure
        p_ws = Psychrometrics.saturation_pressure(t_db)
        
        # Calculate partial pressure of water vapor
        p_w = rh_decimal * p_ws
        
        if p_w >= p_atm:
            raise ValueError("Partial pressure of water vapor exceeds atmospheric pressure")
        
        # Calculate humidity ratio
        w = 0.621945 * p_w / (p_atm - p_w)
        
        return w
    
    @staticmethod
    def relative_humidity(t_db: float, w: float, p_atm: float = ATMOSPHERIC_PRESSURE) -> float:
        """
        Calculate relative humidity from humidity ratio.
        Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 1, Equation 20 (rearranged).
        
        Args:
            t_db: Dry-bulb temperature in °C
            w: Humidity ratio in kg water vapor / kg dry air
            p_atm: Atmospheric pressure in Pa (default: standard atmospheric pressure)
            
        Returns:
            Relative humidity (0-100)
        """
        Psychrometrics.validate_inputs(t_db, p_atm=p_atm)
        if w < 0:
            raise ValueError("Humidity ratio cannot be negative")
        
        # Calculate saturation pressure
        p_ws = Psychrometrics.saturation_pressure(t_db)
        
        # Calculate partial pressure of water vapor
        p_w = p_atm * w / (0.621945 + w)
        
        # Calculate relative humidity
        rh = 100.0 * p_w / p_ws
        
        return rh
    
    @staticmethod
    def wet_bulb_temperature(t_db: float, rh: float, p_atm: float = ATMOSPHERIC_PRESSURE) -> float:
        """
        Calculate wet-bulb temperature using iterative method.
        Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 1, Equation 35.
        
        Args:
            t_db: Dry-bulb temperature in °C
            rh: Relative humidity (0-100)
            p_atm: Atmospheric pressure in Pa (default: standard atmospheric pressure)
            
        Returns:
            Wet-bulb temperature in °C
        """
        Psychrometrics.validate_inputs(t_db, rh, p_atm)
        
        # Calculate humidity ratio at given conditions
        w = Psychrometrics.humidity_ratio(t_db, rh, p_atm)
        
        # Initial guess for wet-bulb temperature
        t_wb = t_db
        
        # Iterative solution
        max_iterations = 100
        tolerance = 0.001  # °C
        
        for i in range(max_iterations):
            # Validate wet-bulb temperature
            Psychrometrics.validate_inputs(t_wb)
            
            # Calculate saturation pressure at wet-bulb temperature
            p_ws_wb = Psychrometrics.saturation_pressure(t_wb)
            
            # Calculate saturation humidity ratio at wet-bulb temperature
            w_s_wb = 0.621945 * p_ws_wb / (p_atm - p_ws_wb)
            
            # Calculate humidity ratio from wet-bulb temperature
            h_fg = 2501000 + 1840 * t_wb  # Latent heat of vaporization at t_wb in J/kg
            c_pa = 1006  # Specific heat of dry air in J/(kg·K)
            c_pw = 1860  # Specific heat of water vapor in J/(kg·K)
            
            w_calc = ((h_fg - c_pw * (t_db - t_wb)) * w_s_wb - c_pa * (t_db - t_wb)) / (h_fg + c_pw * t_db - c_pw * t_wb)
            
            # Check convergence
            if abs(w - w_calc) < tolerance:
                break
            
            # Adjust wet-bulb temperature
            if w_calc > w:
                t_wb -= 0.1
            else:
                t_wb += 0.1
        
        return t_wb
    
    @staticmethod
    def dew_point_temperature(t_db: float, rh: float) -> float:
        """
        Calculate dew point temperature.
        Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 1, Equations 39 and 40.
        
        Args:
            t_db: Dry-bulb temperature in °C
            rh: Relative humidity (0-100)
            
        Returns:
            Dew point temperature in °C
        """
        Psychrometrics.validate_inputs(t_db, rh)
        
        # Convert relative humidity to decimal
        rh_decimal = rh / 100.0
        
        # Calculate saturation pressure
        p_ws = Psychrometrics.saturation_pressure(t_db)
        
        # Calculate partial pressure of water vapor
        p_w = rh_decimal * p_ws
        
        # Calculate dew point temperature
        alpha = math.log(p_w / 1000.0)  # Convert to kPa for the formula
        
        if t_db >= 0:
            # For temperatures above freezing
            c14 = 6.54
            c15 = 14.526
            c16 = 0.7389
            c17 = 0.09486
            c18 = 0.4569
            
            t_dp = c14 + c15 * alpha + c16 * alpha**2 + c17 * alpha**3 + c18 * p_w**(0.1984)
        else:
            # For temperatures below freezing
            c14 = 6.09
            c15 = 12.608
            c16 = 0.4959
            
            t_dp = c14 + c15 * alpha + c16 * alpha**2
        
        return t_dp
    
    @staticmethod
    def enthalpy(t_db: float, w: float) -> float:
        """
        Calculate specific enthalpy of moist air.
        Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 1, Equation 30.
        
        Args:
            t_db: Dry-bulb temperature in °C
            w: Humidity ratio in kg water vapor / kg dry air
            
        Returns:
            Specific enthalpy in J/kg dry air
        """
        Psychrometrics.validate_inputs(t_db)
        if w < 0:
            raise ValueError("Humidity ratio cannot be negative")
        
        c_pa = 1006  # Specific heat of dry air in J/(kg·K)
        h_fg = 2501000  # Latent heat of vaporization at 0°C in J/kg
        c_pw = 1860  # Specific heat of water vapor in J/(kg·K)
        
        h = c_pa * t_db + w * (h_fg + c_pw * t_db)
        
        return h
    
    @staticmethod
    def specific_volume(t_db: float, w: float, p_atm: float = ATMOSPHERIC_PRESSURE) -> float:
        """
        Calculate specific volume of moist air.
        Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 1, Equation 28.
        
        Args:
            t_db: Dry-bulb temperature in °C
            w: Humidity ratio in kg water vapor / kg dry air
            p_atm: Atmospheric pressure in Pa (default: standard atmospheric pressure)
            
        Returns:
            Specific volume in m³/kg dry air
        """
        Psychrometrics.validate_inputs(t_db, p_atm=p_atm)
        if w < 0:
            raise ValueError("Humidity ratio cannot be negative")
        
        # Convert temperature to Kelvin
        t_k = t_db + 273.15
        
        r_da = GAS_CONSTANT_DRY_AIR  # Gas constant for dry air in J/(kg·K)
        
        v = r_da * t_k * (1 + 1.607858 * w) / p_atm
        
        return v
    
    @staticmethod
    def density(t_db: float, w: float, p_atm: float = ATMOSPHERIC_PRESSURE) -> float:
        """
        Calculate density of moist air.
        Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 1, derived from Equation 28.
        
        Args:
            t_db: Dry-bulb temperature in °C
            w: Humidity ratio in kg water vapor / kg dry air
            p_atm: Atmospheric pressure in Pa (default: standard atmospheric pressure)
            
        Returns:
            Density in kg/m³
        """
        Psychrometrics.validate_inputs(t_db, p_atm=p_atm)
        if w < 0:
            raise ValueError("Humidity ratio cannot be negative")
        
        # Calculate specific volume
        v = Psychrometrics.specific_volume(t_db, w, p_atm)
        
        # Density is the reciprocal of specific volume
        rho = (1 + w) / v
        
        return rho
    
    @staticmethod
    def moist_air_properties(t_db: float, rh: float, p_atm: float = ATMOSPHERIC_PRESSURE) -> Dict[str, float]:
        """
        Calculate all psychrometric properties of moist air.
        Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 1.
        
        Args:
            t_db: Dry-bulb temperature in °C
            rh: Relative humidity (0-100)
            p_atm: Atmospheric pressure in Pa (default: standard atmospheric pressure)
            
        Returns:
            Dictionary with all psychrometric properties
        """
        Psychrometrics.validate_inputs(t_db, rh, p_atm)
        
        # Calculate humidity ratio
        w = Psychrometrics.humidity_ratio(t_db, rh, p_atm)
        
        # Calculate wet-bulb temperature
        t_wb = Psychrometrics.wet_bulb_temperature(t_db, rh, p_atm)
        
        # Calculate dew point temperature
        t_dp = Psychrometrics.dew_point_temperature(t_db, rh)
        
        # Calculate enthalpy
        h = Psychrometrics.enthalpy(t_db, w)
        
        # Calculate specific volume
        v = Psychrometrics.specific_volume(t_db, w, p_atm)
        
        # Calculate density
        rho = Psychrometrics.density(t_db, w, p_atm)
        
        # Calculate saturation pressure
        p_ws = Psychrometrics.saturation_pressure(t_db)
        
        # Calculate partial pressure of water vapor
        p_w = rh / 100.0 * p_ws
        
        # Return all properties
        return {
            "dry_bulb_temperature": t_db,
            "wet_bulb_temperature": t_wb,
            "dew_point_temperature": t_dp,
            "relative_humidity": rh,
            "humidity_ratio": w,
            "enthalpy": h,
            "specific_volume": v,
            "density": rho,
            "saturation_pressure": p_ws,
            "partial_pressure": p_w,
            "atmospheric_pressure": p_atm
        }
    
    @staticmethod
    def find_humidity_ratio_for_enthalpy(t_db: float, h: float) -> float:
        """
        Find humidity ratio for a given dry-bulb temperature and enthalpy.
        Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 1, Equation 30 (rearranged).
        
        Args:
            t_db: Dry-bulb temperature in °C
            h: Specific enthalpy in J/kg dry air
            
        Returns:
            Humidity ratio in kg water vapor / kg dry air
        """
        Psychrometrics.validate_inputs(t_db)
        if h < 0:
            raise ValueError("Enthalpy cannot be negative")
        
        c_pa = 1006  # Specific heat of dry air in J/(kg·K)
        h_fg = 2501000  # Latent heat of vaporization at 0°C in J/kg
        c_pw = 1860  # Specific heat of water vapor in J/(kg·K)
        
        w = (h - c_pa * t_db) / (h_fg + c_pw * t_db)
        
        return max(0, w)
    
    @staticmethod
    def find_temperature_for_enthalpy(w: float, h: float) -> float:
        """
        Find dry-bulb temperature for a given humidity ratio and enthalpy.
        Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 1, Equation 30 (rearranged).
        
        Args:
            w: Humidity ratio in kg water vapor / kg dry air
            h: Specific enthalpy in J/kg dry air
            
        Returns:
            Dry-bulb temperature in °C
        """
        if w < 0:
            raise ValueError("Humidity ratio cannot be negative")
        if h < 0:
            raise ValueError("Enthalpy cannot be negative")
        
        c_pa = 1006  # Specific heat of dry air in J/(kg·K)
        h_fg = 2501000  # Latent heat of vaporization at 0°C in J/kg
        c_pw = 1860  # Specific heat of water vapor in J/(kg·K)
        
        t_db = (h - w * h_fg) / (c_pa + w * c_pw)
        
        Psychrometrics.validate_inputs(t_db)
        return t_db
    
    @staticmethod
    def sensible_heat_ratio(q_sensible: float, q_total: float) -> float:
        """
        Calculate sensible heat ratio.
        Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 1, Section 1.5.
        
        Args:
            q_sensible: Sensible heat load in W
            q_total: Total heat load in W
            
        Returns:
            Sensible heat ratio (0-1)
        """
        if q_total == 0:
            return 1.0
        if q_sensible < 0 or q_total < 0:
            raise ValueError("Heat loads cannot be negative")
        
        return q_sensible / q_total
    
    @staticmethod
    def air_flow_rate_for_load(q_sensible: float, t_supply: float, t_return: float, 
                              rh_return: float = 50.0, p_atm: float = ATMOSPHERIC_PRESSURE) -> Dict[str, float]:
        """
        Calculate required air flow rate for a given sensible load.
        Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 1, Section 1.6.
        
        Args:
            q_sensible: Sensible heat load in W
            t_supply: Supply air temperature in °C
            t_return: Return air temperature in °C
            rh_return: Return air relative humidity in % (default: 50%)
            p_atm: Atmospheric pressure in Pa (default: standard atmospheric pressure)
            
        Returns:
            Dictionary with air flow rate in different units
        """
        Psychrometrics.validate_inputs(t_return, rh_return, p_atm)
        Psychrometrics.validate_inputs(t_supply)
        
        # Calculate return air properties
        w_return = Psychrometrics.humidity_ratio(t_return, rh_return, p_atm)
        rho_return = Psychrometrics.density(t_return, w_return, p_atm)
        
        # Calculate specific heat of moist air
        c_pa = 1006  # Specific heat of dry air in J/(kg·K)
        c_pw = 1860  # Specific heat of water vapor in J/(kg·K)
        c_p_moist = c_pa + w_return * c_pw
        
        # Calculate mass flow rate
        delta_t = t_return - t_supply
        if delta_t == 0:
            raise ValueError("Supply and return temperatures cannot be equal")
        
        m_dot = q_sensible / (c_p_moist * delta_t)
        
        # Calculate volumetric flow rate
        v_dot = m_dot / rho_return
        
        # Convert to different units
        v_dot_m3_s = v_dot
        v_dot_m3_h = v_dot * 3600
        v_dot_cfm = v_dot * 2118.88
        v_dot_l_s = v_dot * 1000
        
        return {
            "mass_flow_rate_kg_s": m_dot,
            "volumetric_flow_rate_m3_s": v_dot_m3_s,
            "volumetric_flow_rate_m3_h": v_dot_m3_h,
            "volumetric_flow_rate_cfm": v_dot_cfm,
            "volumetric_flow_rate_l_s": v_dot_l_s
        }
    
    @staticmethod
    def mixing_air_properties(m1: float, t_db1: float, rh1: float, 
                             m2: float, t_db2: float, rh2: float, 
                             p_atm: float = ATMOSPHERIC_PRESSURE) -> Dict[str, float]:
        """
        Calculate properties of mixed airstreams.
        Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 1, Section 1.7.
        
        Args:
            m1: Mass flow rate of airstream 1 in kg/s
            t_db1: Dry-bulb temperature of airstream 1 in °C
            rh1: Relative humidity of airstream 1 in %
            m2: Mass flow rate of airstream 2 in kg/s
            t_db2: Dry-bulb temperature of airstream 2 in °C
            rh2: Relative humidity of airstream 2 in %
            p_atm: Atmospheric pressure in Pa (default: standard atmospheric pressure)
            
        Returns:
            Dictionary with mixed air properties
        """
        Psychrometrics.validate_inputs(t_db1, rh1, p_atm)
        Psychrometrics.validate_inputs(t_db2, rh2, p_atm)
        if m1 < 0 or m2 < 0:
            raise ValueError("Mass flow rates cannot be negative")
        
        # Calculate humidity ratios
        w1 = Psychrometrics.humidity_ratio(t_db1, rh1, p_atm)
        w2 = Psychrometrics.humidity_ratio(t_db2, rh2, p_atm)
        
        # Calculate enthalpies
        h1 = Psychrometrics.enthalpy(t_db1, w1)
        h2 = Psychrometrics.enthalpy(t_db2, w2)
        
        # Calculate mixed air properties
        m_total = m1 + m2
        
        if m_total == 0:
            raise ValueError("Total mass flow rate cannot be zero")
        
        w_mix = (m1 * w1 + m2 * w2) / m_total
        h_mix = (m1 * h1 + m2 * h2) / m_total
        
        # Find dry-bulb temperature for the mixed air
        t_db_mix = Psychrometrics.find_temperature_for_enthalpy(w_mix, h_mix)
        
        # Calculate relative humidity for the mixed air
        rh_mix = Psychrometrics.relative_humidity(t_db_mix, w_mix, p_atm)
        
        # Return mixed air properties
        return Psychrometrics.moist_air_properties(t_db_mix, rh_mix, p_atm)


# Create a singleton instance
psychrometrics = Psychrometrics()

# Example usage
if __name__ == "__main__":
    # Calculate properties of air at 25°C and 50% RH
    properties = psychrometrics.moist_air_properties(25, 50)
    
    print("Air Properties at 25°C and 50% RH:")
    print(f"Dry-bulb temperature: {properties['dry_bulb_temperature']:.2f} °C")
    print(f"Wet-bulb temperature: {properties['wet_bulb_temperature']:.2f} °C")
    print(f"Dew point temperature: {properties['dew_point_temperature']:.2f} °C")
    print(f"Relative humidity: {properties['relative_humidity']:.2f} %")
    print(f"Humidity ratio: {properties['humidity_ratio']:.6f} kg/kg")
    print(f"Enthalpy: {properties['enthalpy']/1000:.2f} kJ/kg")
    print(f"Specific volume: {properties['specific_volume']:.4f} m³/kg")
    print(f"Density: {properties['density']:.4f} kg/m³")
    print(f"Saturation pressure: {properties['saturation_pressure']/1000:.2f} kPa")
    print(f"Partial pressure: {properties['partial_pressure']/1000:.2f} kPa")