Spaces:
Running
Running
File size: 26,675 Bytes
ca54a52 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 |
"""
Heating load calculation module for HVAC Load Calculator.
Implements ASHRAE steady-state methods with simplified thermal lag for compatibility.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 18, Section 18.4.
"""
from typing import Dict, List, Any, Optional, Tuple
import math
import numpy as np
import logging
from enum import Enum
from dataclasses import dataclass
# Configure logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Import utility modules
from utils.psychrometrics import Psychrometrics
from utils.heat_transfer import HeatTransferCalculations
# Import data modules
from data.building_components import Wall, Roof, Floor, Window, Door, Orientation, ComponentType
class HeatingLoadCalculator:
"""Class for heating load calculations based on ASHRAE steady-state methods."""
def __init__(self, debug_mode: bool = False):
"""
Initialize heating load calculator with psychrometric and heat transfer calculations.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 18, Section 18.4.
Args:
debug_mode: Enable debug logging if True
"""
self.psychrometrics = Psychrometrics()
self.heat_transfer = HeatTransferCalculations()
self.safety_factor = 1.15 # 15% safety factor for design loads
self.debug_mode = debug_mode
if debug_mode:
logger.setLevel(logging.DEBUG)
def validate_inputs(self, components: Dict[str, List[Any]], outdoor_temp: float, indoor_temp: float) -> None:
"""
Validate input parameters for heating load calculations.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 18, Section 18.4.
Args:
components: Dictionary of building components
outdoor_temp: Outdoor design temperature in °C
indoor_temp: Indoor design temperature in °C
Raises:
ValueError: If inputs are invalid
"""
if not components:
raise ValueError("Building components dictionary cannot be empty")
for component_type, comp_list in components.items():
if not isinstance(comp_list, list):
raise ValueError(f"Components for {component_type} must be a list")
for comp in comp_list:
if not hasattr(comp, 'area') or comp.area <= 0:
raise ValueError(f"Invalid area for {component_type}: {comp.name}")
if not hasattr(comp, 'u_value') or comp.u_value <= 0:
raise ValueError(f"Invalid U-value for {component_type}: {comp.name}")
if not -50 <= outdoor_temp <= 60 or not -50 <= indoor_temp <= 60:
raise ValueError("Temperatures must be between -50°C and 60°C")
if indoor_temp - outdoor_temp < 1:
raise ValueError("Indoor temperature must be at least 1°C above outdoor temperature for heating")
def calculate_wall_heating_load(self, wall: Wall, outdoor_temp: float, indoor_temp: float) -> float:
"""
Calculate heating load for a wall, with simplified thermal lag.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 18, Equation 18.1.
Args:
wall: Wall component
outdoor_temp: Outdoor temperature in °C
indoor_temp: Indoor temperature in °C
Returns:
Heating load in W
"""
delta_t = indoor_temp - outdoor_temp
if delta_t <= 1:
return 0.0 # Skip calculation for small temperature differences
# Use default lag factor (no thermal mass adjustment)
lag_factor = 1.0
adjusted_delta_t = delta_t * lag_factor
load = self.heat_transfer.conduction_heat_transfer(wall.u_value, wall.area, adjusted_delta_t)
return max(0, load)
def calculate_roof_heating_load(self, roof: Roof, outdoor_temp: float, indoor_temp: float) -> float:
"""
Calculate heating load for a roof, with simplified thermal lag.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 18, Equation 18.1.
Args:
roof: Roof component
outdoor_temp: Outdoor temperature in °C
indoor_temp: Indoor temperature in °C
Returns:
Heating load in W
"""
delta_t = indoor_temp - outdoor_temp
if delta_t <= 1:
return 0.0
lag_factor = 1.0
adjusted_delta_t = delta_t * lag_factor
load = self.heat_transfer.conduction_heat_transfer(roof.u_value, roof.area, adjusted_delta_t)
return max(0, load)
def calculate_floor_heating_load(self, floor: Floor, ground_temp: float, indoor_temp: float) -> float:
"""
Calculate heating load for a floor, using dynamic F-factor for ground contact.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 18, Section 18.4.3.
Args:
floor: Floor component
ground_temp: Ground temperature in °C
indoor_temp: Indoor temperature in °C
Returns:
Heating load in W
"""
delta_t = indoor_temp - ground_temp
if delta_t <= 1:
return 0.0
if floor.is_ground_contact:
# Dynamic F-factor based on insulation
f_factor = 0.3 if floor.insulated else 0.73 # W/m·K
load = f_factor * floor.perimeter_length * delta_t
else:
load = self.heat_transfer.conduction_heat_transfer(floor.u_value, floor.area, delta_t)
if self.debug_mode:
logger.debug(f"Floor {floor.name} load: {load:.2f} W, Delta T: {delta_t:.2f}°C")
return max(0, load)
def calculate_window_heating_load(self, window: Window, outdoor_temp: float, indoor_temp: float) -> float:
"""
Calculate heating load for a window.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 18, Equation 18.1.
Args:
window: Window component
outdoor_temp: Outdoor temperature in °C
indoor_temp: Indoor temperature in °C
Returns:
Heating load in W
"""
delta_t = indoor_temp - outdoor_temp
if delta_t <= 1:
return 0.0
load = self.heat_transfer.conduction_heat_transfer(window.u_value, window.area, delta_t)
return max(0, load)
def calculate_door_heating_load(self, door: Door, outdoor_temp: float, indoor_temp: float) -> float:
"""
Calculate heating load for a door.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 18, Equation 18.1.
Args:
door: Door component
outdoor_temp: Outdoor temperature in °C
indoor_temp: Indoor temperature in °C
Returns:
Heating load in W
"""
delta_t = indoor_temp - outdoor_temp
if delta_t <= 1:
return 0.0
load = self.heat_transfer.conduction_heat_transfer(door.u_value, door.area, delta_t)
return max(0, load)
def calculate_infiltration_heating_load(self, indoor_conditions: Dict[str, float],
outdoor_conditions: Dict[str, float],
infiltration: Dict[str, float],
building_height: float,
p_atm: float = 101325) -> Tuple[float, float]:
"""
Calculate sensible and latent heating loads due to infiltration.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 18, Equations 18.5-18.6.
Args:
indoor_conditions: Indoor conditions (temperature, relative_humidity)
outdoor_conditions: Outdoor conditions (design_temperature, design_relative_humidity, wind_speed)
infiltration: Infiltration parameters (flow_rate, crack_length, height)
building_height: Building height in m
p_atm: Atmospheric pressure in Pa (default: 101325 Pa)
Returns:
Tuple of sensible and latent loads in W
"""
delta_t = indoor_conditions['temperature'] - outdoor_conditions['design_temperature']
if delta_t <= 1:
return 0.0, 0.0
# Calculate pressure differences
wind_pd = self.heat_transfer.wind_pressure_difference(outdoor_conditions['wind_speed'])
stack_pd = self.heat_transfer.stack_pressure_difference(
building_height,
indoor_conditions['temperature'] + 273.15,
outdoor_conditions['design_temperature'] + 273.15
)
total_pd = self.heat_transfer.combined_pressure_difference(wind_pd, stack_pd)
# Calculate infiltration flow rate
crack_length = infiltration.get('crack_length', 20.0)
flow_rate = self.heat_transfer.crack_method_infiltration(crack_length, 0.0002, total_pd)
# Calculate humidity ratio difference
w_indoor = self.psychrometrics.humidity_ratio(
indoor_conditions['temperature'],
indoor_conditions['relative_humidity'],
p_atm
)
w_outdoor = self.psychrometrics.humidity_ratio(
outdoor_conditions['design_temperature'],
outdoor_conditions['design_relative_humidity'],
p_atm
)
delta_w = max(0, w_indoor - w_outdoor)
# Calculate sensible and latent loads using indoor conditions for air properties
sensible_load = self.heat_transfer.infiltration_heat_transfer(
flow_rate, delta_t,
indoor_conditions['temperature'],
indoor_conditions['relative_humidity'],
p_atm
)
latent_load = self.heat_transfer.infiltration_latent_heat_transfer(
flow_rate, delta_w,
indoor_conditions['temperature'],
indoor_conditions['relative_humidity'],
p_atm
)
if self.debug_mode:
logger.debug(f"Infiltration flow rate: {flow_rate:.6f} m³/s, Sensible load: {sensible_load:.2f} W, Latent load: {latent_load:.2f} W")
return max(0, sensible_load), max(0, latent_load)
def calculate_ventilation_heating_load(self, ventilation: Dict[str, float],
indoor_conditions: Dict[str, float],
outdoor_conditions: Dict[str, float],
p_atm: float = 101325) -> Tuple[float, float]:
"""
Calculate sensible and latent heating loads due to ventilation.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 18, Equations 18.5-18.6.
Args:
ventilation: Ventilation parameters (flow_rate)
indoor_conditions: Indoor conditions (temperature, relative_humidity)
outdoor_conditions: Outdoor conditions (design_temperature, design_relative_humidity)
p_atm: Atmospheric pressure in Pa (default: 101325 Pa)
Returns:
Tuple of sensible and latent loads in W
"""
delta_t = indoor_conditions['temperature'] - outdoor_conditions['design_temperature']
if delta_t <= 1:
return 0.0, 0.0
flow_rate = ventilation['flow_rate']
w_indoor = self.psychrometrics.humidity_ratio(
indoor_conditions['temperature'],
indoor_conditions['relative_humidity'],
p_atm
)
w_outdoor = self.psychrometrics.humidity_ratio(
outdoor_conditions['design_temperature'],
outdoor_conditions['design_relative_humidity'],
p_atm
)
delta_w = max(0, w_indoor - w_outdoor)
# Calculate sensible and latent loads using indoor conditions for air properties
sensible_load = self.heat_transfer.infiltration_heat_transfer(
flow_rate, delta_t,
indoor_conditions['temperature'],
indoor_conditions['relative_humidity'],
p_atm
)
latent_load = self.heat_transfer.infiltration_latent_heat_transfer(
flow_rate, delta_w,
indoor_conditions['temperature'],
indoor_conditions['relative_humidity'],
p_atm
)
if self.debug_mode:
logger.debug(f"Ventilation flow rate: {flow_rate:.6f} m³/s, Sensible load: {sensible_load:.2f} W, Latent load: {latent_load:.2f} W")
return max(0, sensible_load), max(0, latent_load)
def calculate_internal_gains(self, internal_loads: Dict[str, Any]) -> float:
"""
Calculate internal heat gains from people, lighting, and equipment.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 18, Section 18.4.4.
Args:
internal_loads: Internal loads (people, lights, equipment)
Returns:
Total internal gains in W
"""
total_gains = 0.0
# People gains
people = internal_loads.get('people', {})
if people.get('number', 0) > 0:
sensible_gain = people.get('sensible_gain', 70.0)
total_gains += people['number'] * sensible_gain
# Lighting gains
lights = internal_loads.get('lights', {})
if lights.get('power', 0) > 0:
total_gains += lights['power'] * lights.get('use_factor', 0.8)
# Equipment gains
equipment = internal_loads.get('equipment', {})
if equipment.get('power', 0) > 0:
total_gains += equipment['power'] * equipment.get('use_factor', 0.7)
return max(0, total_gains)
def calculate_design_heating_load(self, building_components: Dict[str, List[Any]],
outdoor_conditions: Dict[str, float],
indoor_conditions: Dict[str, float],
internal_loads: Dict[str, Any],
p_atm: float = 101325) -> Dict[str, float]:
"""
Calculate design heating loads for all components.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 18, Section 18.4.
Args:
building_components: Dictionary of building components
outdoor_conditions: Outdoor conditions (design_temperature, design_relative_humidity, ground_temperature, wind_speed)
indoor_conditions: Indoor conditions (temperature, relative_humidity)
internal_loads: Internal loads (people, lights, equipment, infiltration, ventilation)
p_atm: Atmospheric pressure in Pa (default: 101325 Pa)
Returns:
Dictionary of design loads in W
"""
try:
self.validate_inputs(building_components, outdoor_conditions['design_temperature'], indoor_conditions['temperature'])
except ValueError as e:
raise ValueError(f"Input validation failed: {str(e)}")
loads = {
'walls': 0.0,
'roofs': 0.0,
'floors': 0.0,
'windows': 0.0,
'doors': 0.0,
'infiltration_sensible': 0.0,
'infiltration_latent': 0.0,
'ventilation_sensible': 0.0,
'ventilation_latent': 0.0,
'internal_gains': 0.0
}
# Calculate envelope loads
for wall in building_components.get('walls', []):
loads['walls'] += self.calculate_wall_heating_load(wall, outdoor_conditions['design_temperature'], indoor_conditions['temperature'])
for roof in building_components.get('roofs', []):
loads['roofs'] += self.calculate_roof_heating_load(roof, outdoor_conditions['design_temperature'], indoor_conditions['temperature'])
for floor in building_components.get('floors', []):
loads['floors'] += self.calculate_floor_heating_load(floor, outdoor_conditions['ground_temperature'], indoor_conditions['temperature'])
for window in building_components.get('windows', []):
loads['windows'] += self.calculate_window_heating_load(window, outdoor_conditions['design_temperature'], indoor_conditions['temperature'])
for door in building_components.get('doors', []):
loads['doors'] += self.calculate_door_heating_load(door, outdoor_conditions['design_temperature'], indoor_conditions['temperature'])
# Calculate infiltration and ventilation loads
building_height = internal_loads.get('infiltration', {}).get('height', 3.0)
infiltration_sensible, infiltration_latent = self.calculate_infiltration_heating_load(
indoor_conditions, outdoor_conditions, internal_loads.get('infiltration', {}), building_height, p_atm
)
loads['infiltration_sensible'] = infiltration_sensible
loads['infiltration_latent'] = infiltration_latent
ventilation_sensible, ventilation_latent = self.calculate_ventilation_heating_load(
internal_loads.get('ventilation', {}), indoor_conditions, outdoor_conditions, p_atm
)
loads['ventilation_sensible'] = ventilation_sensible
loads['ventilation_latent'] = ventilation_latent
# Calculate internal gains (negative for heating)
loads['internal_gains'] = -self.calculate_internal_gains(internal_loads)
return loads
def calculate_heating_load_summary(self, design_loads: Dict[str, float]) -> Dict[str, float]:
"""
Summarize heating loads with safety factor.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 18, Section 18.4.
Args:
design_loads: Dictionary of design loads in W
Returns:
Summary dictionary with total, subtotal, and safety factor
"""
subtotal = sum(
load for key, load in design_loads.items()
if key not in ['internal_gains'] and load > 0
)
internal_gains = design_loads.get('internal_gains', 0)
total = max(0, subtotal + internal_gains) * self.safety_factor
return {
'subtotal': subtotal,
'internal_gains': internal_gains,
'total': total,
'safety_factor': self.safety_factor
}
def calculate_heating_degree_days(self, base_temp: float, monthly_temps: Dict[str, float]) -> float:
"""
Calculate heating degree days for a year.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 14, Section 14.3.
Args:
base_temp: Base temperature for HDD calculation in °C
monthly_temps: Dictionary of monthly average temperatures
Returns:
Total heating degree days
"""
hdd = 0.0
days_per_month = {
'Jan': 31, 'Feb': 28, 'Mar': 31, 'Apr': 30, 'May': 31, 'Jun': 30,
'Jul': 31, 'Aug': 31, 'Sep': 30, 'Oct': 31, 'Nov': 30, 'Dec': 31
}
for month, temp in monthly_temps.items():
if temp < base_temp:
hdd += (base_temp - temp) * days_per_month[month]
return hdd
def calculate_annual_heating_energy(self, design_loads: Dict[str, float],
monthly_temps: Dict[str, float],
indoor_temp: float,
operating_hours: str) -> float:
"""
Calculate annual heating energy consumption.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 14, Section 14.3.
Args:
design_loads: Dictionary of design loads in W
monthly_temps: Dictionary of monthly average temperatures
indoor_temp: Indoor design temperature in °C
operating_hours: Operating hours (e.g., '8:00-18:00')
Returns:
Annual heating energy in kWh
"""
base_temp = indoor_temp
hdd = self.calculate_heating_degree_days(base_temp, monthly_temps)
# Parse operating hours
start_hour, end_hour = map(lambda x: int(x.split(':')[0]), operating_hours.split('-'))
daily_hours = end_hour - start_hour
# Calculate design condition degree days
design_temp = min(monthly_temps.values())
design_delta_t = indoor_temp - design_temp
if design_delta_t <= 1:
return 0.0
total_load = self.calculate_heating_load_summary(design_loads)['total']
# Scale load by HDD and operating hours
annual_energy = (total_load / design_delta_t) * hdd * (daily_hours / 24) / 1000 # kWh
return max(0, annual_energy)
def calculate_monthly_heating_loads(self, building_components: Dict[str, List[Any]],
outdoor_conditions: Dict[str, float],
indoor_conditions: Dict[str, float],
internal_loads: Dict[str, Any],
monthly_temps: Dict[str, float],
p_atm: float = 101325) -> Dict[str, float]:
"""
Calculate monthly heating loads.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 18, Section 18.4.
Args:
building_components: Dictionary of building components
outdoor_conditions: Outdoor conditions
indoor_conditions: Indoor conditions
internal_loads: Internal loads
monthly_temps: Dictionary of monthly average temperatures
p_atm: Atmospheric pressure in Pa (default: 101325 Pa)
Returns:
Dictionary of monthly heating loads in kW
"""
monthly_loads = {}
days_per_month = {
'Jan': 31, 'Feb': 28, 'Mar': 31, 'Apr': 30, 'May': 31, 'Jun': 30,
'Jul': 31, 'Aug': 31, 'Sep': 30, 'Oct': 31, 'Nov': 30, 'Dec': 31
}
for month, temp in monthly_temps.items():
modified_outdoor = outdoor_conditions.copy()
modified_outdoor['design_temperature'] = temp
modified_outdoor['ground_temperature'] = temp
try:
design_loads = self.calculate_design_heating_load(
building_components, modified_outdoor, indoor_conditions, internal_loads, p_atm
)
summary = self.calculate_heating_load_summary(design_loads)
monthly_loads[month] = summary['total'] / 1000 # kW
except ValueError:
monthly_loads[month] = 0.0 # Skip invalid months
return monthly_loads
# Example usage
if __name__ == "__main__":
calculator = HeatingLoadCalculator(debug_mode=True)
# Example building components
components = {
'walls': [Wall(id="w1", name="North Wall", area=20.0, u_value=0.5, orientation=Orientation.NORTH)],
'roofs': [Roof(id="r1", name="Main Roof", area=100.0, u_value=0.3, orientation=Orientation.HORIZONTAL)],
'floors': [Floor(id="f1", name="Ground Floor", area=100.0, u_value=0.4, perimeter_length=40.0,
is_ground_contact=True, insulated=True, ground_temperature_c=10.0)],
'windows': [Window(id="win1", name="South Window", area=10.0, u_value=2.8, orientation=Orientation.SOUTH,
shgc=0.7, shading_coefficient=0.8)],
'doors': [Door(id="d1", name="Main Door", area=2.0, u_value=2.0, orientation=Orientation.NORTH)]
}
outdoor_conditions = {
'design_temperature': -5.0,
'design_relative_humidity': 80.0,
'ground_temperature': 10.0,
'wind_speed': 4.0
}
indoor_conditions = {
'temperature': 21.0,
'relative_humidity': 40.0
}
internal_loads = {
'people': {'number': 10, 'sensible_gain': 70.0, 'operating_hours': '8:00-18:00'},
'lights': {'power': 1000.0, 'use_factor': 0.8, 'hours_operation': '8h'},
'equipment': {'power': 500.0, 'use_factor': 0.7, 'hours_operation': '8h'},
'infiltration': {'flow_rate': 0.05, 'height': 3.0, 'crack_length': 20.0},
'ventilation': {'flow_rate': 0.1},
'operating_hours': '8:00-18:00'
}
monthly_temps = {
'Jan': -5.0, 'Feb': -3.0, 'Mar': 2.0, 'Apr': 8.0, 'May': 14.0, 'Jun': 19.0,
'Jul': 22.0, 'Aug': 21.0, 'Sep': 16.0, 'Oct': 10.0, 'Nov': 4.0, 'Dec': -2.0
}
# Calculate design loads
design_loads = calculator.calculate_design_heating_load(components, outdoor_conditions, indoor_conditions, internal_loads)
summary = calculator.calculate_heating_load_summary(design_loads)
# Log results
logger.info(f"Total Heating Load: {summary['total']:.2f} W")
logger.info(f"Wall Load: {design_loads['walls']:.2f} W")
logger.info(f"Roof Load: {design_loads['roofs']:.2f} W")
logger.info(f"Floor Load: {design_loads['floors']:.2f} W")
logger.info(f"Window Load: {design_loads['windows']:.2f} W")
logger.info(f"Door Load: {design_loads['doors']:.2f} W")
logger.info(f"Infiltration Sensible Load: {design_loads['infiltration_sensible']:.2f} W")
logger.info(f"Infiltration Latent Load: {design_loads['infiltration_latent']:.2f} W")
logger.info(f"Ventilation Sensible Load: {design_loads['ventilation_sensible']:.2f} W")
logger.info(f"Ventilation Latent Load: {design_loads['ventilation_latent']:.2f} W")
logger.info(f"Internal Gains: {design_loads['internal_gains']:.2f} W")
# Calculate annual energy
annual_energy = calculator.calculate_annual_heating_energy(
design_loads, monthly_temps, indoor_conditions['temperature'], internal_loads['operating_hours']
)
logger.info(f"Annual Heating Energy: {annual_energy:.2f} kWh")
# Calculate monthly loads
monthly_loads = calculator.calculate_monthly_heating_loads(
components, outdoor_conditions, indoor_conditions, internal_loads, monthly_temps
)
logger.info("Monthly Heating Loads (kW):")
for month, load in monthly_loads.items():
logger.info(f"{month}: {load:.2f} kW") |