Spaces:
Sleeping
Sleeping
File size: 28,582 Bytes
ca54a52 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 |
"""
ASHRAE 169 climate data module for HVAC Load Calculator.
This module provides access to climate data for various locations based on ASHRAE 169 standard.
Author: Dr Majed Abuseif
Date: March 2025
Version: 1.0.0
"""
from typing import Dict, List, Any, Optional
import pandas as pd
import numpy as np
import os
import json
from dataclasses import dataclass
import streamlit as st
import plotly.graph_objects as go
from io import StringIO
# Define paths
DATA_DIR = os.path.dirname(os.path.abspath(__file__))
@dataclass
class ClimateLocation:
"""Class representing a climate location with ASHRAE 169 data."""
id: str
country: str
state_province: str
city: str
latitude: float
longitude: float
elevation: float # meters
climate_zone: str
heating_degree_days: float # base 18°C
cooling_degree_days: float # base 18°C
winter_design_temp: float # 99.6% heating design temperature (°C)
summer_design_temp_db: float # 0.4% cooling design dry-bulb temperature (°C)
summer_design_temp_wb: float # 0.4% cooling design wet-bulb temperature (°C)
summer_daily_range: float # Mean daily temperature range in summer (°C)
monthly_temps: Dict[str, float] # Average monthly temperatures (°C)
monthly_humidity: Dict[str, float] # Average monthly relative humidity (%)
def to_dict(self) -> Dict[str, Any]:
"""Convert the climate location to a dictionary."""
return {
"id": self.id,
"country": self.country,
"state_province": self.state_province,
"city": self.city,
"latitude": self.latitude,
"longitude": self.longitude,
"elevation": self.elevation,
"climate_zone": self.climate_zone,
"heating_degree_days": self.heating_degree_days,
"cooling_degree_days": self.cooling_degree_days,
"winter_design_temp": self.winter_design_temp,
"summer_design_temp_db": self.summer_design_temp_db,
"summer_design_temp_wb": self.summer_design_temp_wb,
"summer_daily_range": self.summer_daily_range,
"monthly_temps": self.monthly_temps,
"monthly_humidity": self.monthly_humidity
}
class ClimateData:
"""Class for managing ASHRAE 169 climate data."""
def __init__(self):
"""Initialize climate data."""
self.locations = {}
self.countries = []
self.country_states = {}
def _group_locations_by_country_state(self) -> Dict[str, Dict[str, List[str]]]:
"""Group locations by country and state/province."""
result = {}
for loc in self.locations.values():
if loc.country not in result:
result[loc.country] = {}
if loc.state_province not in result[loc.country]:
result[loc.country][loc.state_province] = []
result[loc.country][loc.state_province].append(loc.city)
for country in result:
for state in result[country]:
result[country][state] = sorted(result[country][state])
return result
def add_location(self, location: ClimateLocation):
"""Add a new location to the dictionary."""
self.locations[location.id] = location
self.countries = sorted(list(set(loc.country for loc in self.locations.values())))
self.country_states = self._group_locations_by_country_state()
def get_location_by_id(self, location_id: str, session_state: Dict[str, Any]) -> Optional[Dict[str, Any]]:
"""Retrieve climate data by ID from session state or locations."""
if "climate_data" in session_state and session_state["climate_data"].get("id") == location_id:
return session_state["climate_data"]
if location_id in self.locations:
return self.locations[location_id].to_dict()
return None
@staticmethod
def validate_climate_data(data: Dict[str, Any]) -> bool:
"""Validate climate data for required fields and ranges."""
required_fields = [
"id", "country", "city", "latitude", "longitude", "elevation",
"climate_zone", "heating_degree_days", "cooling_degree_days",
"winter_design_temp", "summer_design_temp_db", "summer_design_temp_wb",
"summer_daily_range", "monthly_temps", "monthly_humidity"
]
month_names = ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]
for field in required_fields:
if field not in data:
return False
if not (-90 <= data["latitude"] <= 90 and -180 <= data["longitude"] <= 180):
return False
if data["elevation"] < 0:
return False
if data["climate_zone"] not in ["0A", "0B", "1A", "1B", "2A", "2B", "3A", "3B", "3C", "4A", "4B", "4C", "5A", "5B", "5C", "6A", "6B", "7", "8"]:
return False
if not (data["heating_degree_days"] >= 0 and data["cooling_degree_days"] >= 0):
return False
if not (-50 <= data["winter_design_temp"] <= 20):
return False
if not (0 <= data["summer_design_temp_db"] <= 50 and 0 <= data["summer_design_temp_wb"] <= 40):
return False
if data["summer_daily_range"] < 0:
return False
for month in month_names:
if month not in data["monthly_temps"] or month not in data["monthly_humidity"]:
return False
if not (-50 <= data["monthly_temps"][month] <= 50):
return False
if not (0 <= data["monthly_humidity"][month] <= 100):
return False
return True
@staticmethod
def calculate_wet_bulb(dry_bulb: np.ndarray, relative_humidity: np.ndarray) -> np.ndarray:
"""Calculate Wet Bulb Temperature using Stull (2011) approximation."""
db = np.array(dry_bulb, dtype=float)
rh = np.array(relative_humidity, dtype=float)
term1 = db * np.arctan(0.151977 * (rh + 8.313659)**0.5)
term2 = np.arctan(db + rh)
term3 = np.arctan(rh - 1.676331)
term4 = 0.00391838 * rh**1.5 * np.arctan(0.023101 * rh)
term5 = -4.686035
wet_bulb = term1 + term2 - term3 + term4 + term5
invalid_mask = (rh < 5) | (rh > 99) | (db < -20) | (db > 50) | np.isnan(db) | np.isnan(rh)
wet_bulb[invalid_mask] = np.nan
return wet_bulb
def display_climate_input(self, session_state: Dict[str, Any]):
"""Display form for manual input or EPW upload in Streamlit."""
st.title("Climate Data")
if not session_state.building_info.get("country") or not session_state.building_info.get("city"):
st.warning("Please enter country and city in Building Information first.")
st.button("Go to Building Information", on_click=lambda: setattr(session_state, "page", "Building Information"))
return
st.subheader(f"Location: {session_state.building_info['country']}, {session_state.building_info['city']}")
tab1, tab2 = st.tabs(["Manual Input", "Upload EPW File"])
# Manual Input Tab
with tab1:
with st.form("manual_climate_form"):
col1, col2 = st.columns(2)
with col1:
latitude = st.number_input(
"Latitude",
min_value=-90.0,
max_value=90.0,
value=0.0,
step=0.1,
help="Enter the latitude of the location in degrees (e.g., 64.1 for Reykjavik)"
)
longitude = st.number_input(
"Longitude",
min_value=-180.0,
max_value=180.0,
value=0.0,
step=0.1,
help="Enter the longitude of the location in degrees (e.g., -21.9 for Reykjavik)"
)
elevation = st.number_input(
"Elevation (m)",
min_value=0.0,
value=0.0,
step=10.0,
help="Enter the elevation of the location above sea level in meters"
)
climate_zone = st.selectbox(
"Climate Zone",
["0A", "0B", "1A", "1B", "2A", "2B", "3A", "3B", "3C", "4A", "4B", "4C", "5A", "5B", "5C", "6A", "6B", "7", "8"],
help="Select the ASHRAE climate zone for the location (e.g., 6A for cold, humid climates)"
)
with col2:
hdd = st.number_input(
"Heating Degree Days (base 18°C)",
min_value=0.0,
value=0.0,
step=100.0,
help="Enter the annual heating degree days using an 18°C base temperature"
)
cdd = st.number_input(
"Cooling Degree Days (base 18°C)",
min_value=0.0,
value=0.0,
step=100.0,
help="Enter the annual cooling degree days using an 18°C base temperature"
)
winter_design_temp = st.number_input(
"Winter Design Temp (99.6%) (°C)",
min_value=-50.0,
max_value=20.0,
value=0.0,
step=0.5,
help="Enter the 99.6% winter design temperature in °C (extreme cold condition)"
)
summer_design_temp_db = st.number_input(
"Summer Design Temp DB (0.4%) (°C)",
min_value=0.0,
max_value=50.0,
value=35.0,
step=0.5,
help="Enter the 0.4% summer design dry-bulb temperature in °C (extreme hot condition)"
)
summer_design_temp_wb = st.number_input(
"Summer Design Temp WB (0.4%) (°C)",
min_value=0.0,
max_value=40.0,
value=25.0,
step=0.5,
help="Enter the 0.4% summer design wet-bulb temperature in °C (for humidity consideration)"
)
summer_daily_range = st.number_input(
"Summer Daily Range (°C)",
min_value=0.0,
value=5.0,
step=0.5,
help="Enter the average daily temperature range in summer in °C"
)
# Monthly Data with clear titles (no help added here)
monthly_temps = {}
monthly_humidity = {}
month_names = ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]
st.subheader("Monthly Temperatures")
col1, col2 = st.columns(2)
with col1:
for month in month_names[:6]:
monthly_temps[month] = st.number_input(f"{month} Temp (°C)", min_value=-50.0, max_value=50.0, value=20.0, step=0.5, key=f"temp_{month}")
with col2:
for month in month_names[6:]:
monthly_temps[month] = st.number_input(f"{month} Temp (°C)", min_value=-50.0, max_value=50.0, value=20.0, step=0.5, key=f"temp_{month}")
st.subheader("Monthly Humidity")
col1, col2 = st.columns(2)
with col1:
for month in month_names[:6]:
monthly_humidity[month] = st.number_input(f"{month} Humidity (%)", min_value=0.0, max_value=100.0, value=50.0, step=5.0, key=f"hum_{month}")
with col2:
for month in month_names[6:]:
monthly_humidity[month] = st.number_input(f"{month} Humidity (%)", min_value=0.0, max_value=100.0, value=50.0, step=5.0, key=f"hum_{month}")
if st.form_submit_button("Save Climate Data"):
try:
# Generate ID internally using country and city from session_state
generated_id = f"{session_state.building_info['country'][:2].upper()}-{session_state.building_info['city'][:3].upper()}"
location = ClimateLocation(
id=generated_id,
country=session_state.building_info["country"],
state_province="N/A", # Default since input removed
city=session_state.building_info["city"],
latitude=latitude,
longitude=longitude,
elevation=elevation,
climate_zone=climate_zone,
heating_degree_days=hdd,
cooling_degree_days=cdd,
winter_design_temp=winter_design_temp,
summer_design_temp_db=summer_design_temp_db,
summer_design_temp_wb=summer_design_temp_wb,
summer_daily_range=summer_daily_range,
monthly_temps=monthly_temps,
monthly_humidity=monthly_humidity
)
self.add_location(location)
climate_data_dict = location.to_dict()
if not self.validate_climate_data(climate_data_dict):
raise ValueError("Invalid climate data. Please check all inputs.")
session_state["climate_data"] = climate_data_dict # Save to session state
st.success("Climate data saved manually!")
st.write(f"Debug: Saved climate data for {location.city} (ID: {location.id}): {climate_data_dict}") # Debug
self.display_design_conditions(location)
self.visualize_data(location, epw_data=None)
except Exception as e:
st.error(f"Error saving climate data: {str(e)}. Please check inputs and try again.")
# EPW Upload Tab
with tab2:
uploaded_file = st.file_uploader("Upload EPW File", type=["epw"])
if uploaded_file:
try:
epw_content = uploaded_file.read().decode("utf-8")
epw_lines = epw_content.splitlines()
header = next(line for line in epw_lines if line.startswith("LOCATION"))
header_parts = header.split(",")
latitude = float(header_parts[6])
longitude = float(header_parts[7])
elevation = float(header_parts[8])
data_start_idx = next(i for i, line in enumerate(epw_lines) if line.startswith("DATA PERIODS")) + 1
epw_data = pd.read_csv(StringIO("\n".join(epw_lines[data_start_idx:])), header=None, dtype=str)
if len(epw_data) != 8760:
raise ValueError(f"EPW file has {len(epw_data)} records, expected 8760.")
for col in epw_data.columns:
epw_data[col] = pd.to_numeric(epw_data[col], errors='coerce')
months = epw_data[1].values # Month
dry_bulb = epw_data[6].values # Dry-bulb temperature (°C)
humidity = epw_data[8].values # Relative humidity (%)
pressure = epw_data[9].values # Atmospheric pressure (Pa)
wet_bulb = self.calculate_wet_bulb(dry_bulb, humidity)
if np.all(np.isnan(dry_bulb)) or np.all(np.isnan(humidity)) or np.all(np.isnan(wet_bulb)):
raise ValueError("Dry bulb, humidity, or calculated wet bulb data is entirely NaN.")
daily_temps = np.nanmean(dry_bulb.reshape(-1, 24), axis=1)
hdd = round(np.nansum(np.maximum(18 - daily_temps, 0)))
cdd = round(np.nansum(np.maximum(daily_temps - 18, 0)))
winter_design_temp = round(np.nanpercentile(dry_bulb, 0.4), 1)
summer_design_temp_db = round(np.nanpercentile(dry_bulb, 99.6), 1)
summer_design_temp_wb = round(np.nanpercentile(wet_bulb, 99.6), 1)
summer_mask = (months >= 6) & (months <= 8)
summer_temps = dry_bulb[summer_mask].reshape(-1, 24)
summer_daily_range = round(np.nanmean(np.nanmax(summer_temps, axis=1) - np.nanmin(summer_temps, axis=1)), 1)
monthly_temps = {}
monthly_humidity = {}
month_names = ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]
for i in range(1, 13):
month_mask = (months == i)
monthly_temps[month_names[i-1]] = round(np.nanmean(dry_bulb[month_mask]), 1)
monthly_humidity[month_names[i-1]] = round(np.nanmean(humidity[month_mask]), 1)
avg_humidity = np.nanmean(humidity)
climate_zone = self.assign_climate_zone(hdd, cdd, avg_humidity)
location = ClimateLocation(
id=f"{session_state.building_info['country'][:2].upper()}-{session_state.building_info['city'][:3].upper()}",
country=session_state.building_info["country"],
state_province="N/A",
city=session_state.building_info["city"],
latitude=latitude,
longitude=longitude,
elevation=elevation,
climate_zone=climate_zone,
heating_degree_days=hdd,
cooling_degree_days=cdd,
winter_design_temp=winter_design_temp,
summer_design_temp_db=summer_design_temp_db,
summer_design_temp_wb=summer_design_temp_wb,
summer_daily_range=summer_daily_range,
monthly_temps=monthly_temps,
monthly_humidity=monthly_humidity
)
self.add_location(location)
climate_data_dict = location.to_dict()
if not self.validate_climate_data(climate_data_dict):
raise ValueError("Invalid climate data extracted from EPW file.")
session_state["climate_data"] = climate_data_dict # Save to session state
st.success("Climate data extracted from EPW file with calculated Wet Bulb Temperature!")
st.write(f"Debug: Saved climate data for {location.city} (ID: {location.id}): {climate_data_dict}") # Debug
self.display_design_conditions(location)
self.visualize_data(location, epw_data=epw_data)
except Exception as e:
st.error(f"Error processing EPW file: {str(e)}. Ensure it has 8760 hourly records and correct format.")
col1, col2 = st.columns(2)
with col1:
st.button("Back to Building Information", on_click=lambda: setattr(session_state, "page", "Building Information"))
with col2:
if self.locations:
st.button("Continue to Building Components", on_click=lambda: setattr(session_state, "page", "Building Components"))
else:
st.button("Continue to Building Components", disabled=True)
# Display saved session state data (if any)
if "climate_data" in session_state and session_state["climate_data"]:
st.subheader("Saved Climate Data")
st.json(session_state["climate_data"]) # Display as JSON for clarity
def display_design_conditions(self, location: ClimateLocation):
"""Display a table of design conditions including additional parameters for HVAC calculations."""
st.subheader("Design Conditions for HVAC Calculations")
design_data = pd.DataFrame({
"Parameter": [
"Latitude",
"Longitude",
"Elevation (m)",
"Climate Zone",
"Heating Degree Days (base 18°C)",
"Cooling Degree Days (base 18°C)",
"Winter Design Temperature (99.6%)",
"Summer Design Dry-Bulb Temp (0.4%)",
"Summer Design Wet-Bulb Temp (0.4%)",
"Summer Daily Temperature Range"
],
"Value": [
f"{location.latitude}°",
f"{location.longitude}°",
f"{location.elevation} m",
location.climate_zone,
f"{location.heating_degree_days} HDD",
f"{location.cooling_degree_days} CDD",
f"{location.winter_design_temp} °C",
f"{location.summer_design_temp_db} °C",
f"{location.summer_design_temp_wb} °C",
f"{location.summer_daily_range} °C"
]
})
month_names = ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]
monthly_temp_data = pd.DataFrame({
"Parameter": [f"{month} Avg Temp" for month in month_names],
"Value": [f"{location.monthly_temps[month]} °C" for month in month_names]
})
monthly_humidity_data = pd.DataFrame({
"Parameter": [f"{month} Avg Humidity" for month in month_names],
"Value": [f"{location.monthly_humidity[month]} %" for month in month_names]
})
full_design_data = pd.concat([design_data, monthly_temp_data, monthly_humidity_data], ignore_index=True)
st.table(full_design_data)
@staticmethod
def assign_climate_zone(hdd: float, cdd: float, avg_humidity: float) -> str:
"""Assign ASHRAE 169 climate zone based on HDD, CDD, and humidity."""
if cdd > 10000:
return "0A" if avg_humidity > 60 else "0B"
elif cdd > 5000:
return "1A" if avg_humidity > 60 else "1B"
elif cdd > 2500:
return "2A" if avg_humidity > 60 else "2B"
elif hdd < 2000 and cdd > 1000:
return "3A" if avg_humidity > 60 else "3B" if avg_humidity < 40 else "3C"
elif hdd < 3000:
return "4A" if avg_humidity > 60 else "4B" if avg_humidity < 40 else "4C"
elif hdd < 4000:
return "5A" if avg_humidity > 60 else "5B" if avg_humidity < 40 else "5C"
elif hdd < 5000:
return "6A" if avg_humidity > 60 else "6B"
elif hdd < 7000:
return "7"
else:
return "8"
@staticmethod
def visualize_data(location: ClimateLocation, epw_data: Optional[pd.DataFrame] = None):
"""Visualize monthly temperature and humidity data."""
st.subheader("Monthly Climate Data Visualization")
months = list(range(1, 13))
month_names = ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]
temps_avg = [location.monthly_temps[m] for m in month_names]
humidity_avg = [location.monthly_humidity[m] for m in month_names]
fig_temp = go.Figure()
fig_temp.add_trace(go.Scatter(
x=months,
y=temps_avg,
mode='lines+markers',
name='Avg Temperature (°C)',
line=dict(color='red'),
marker=dict(size=8)
))
if epw_data is not None:
dry_bulb = epw_data[6].values
month_col = epw_data[1].values
temps_min = []
temps_max = []
for i in range(1, 13):
month_mask = (month_col == i)
temps_min.append(round(np.nanmin(dry_bulb[month_mask]), 1))
temps_max.append(round(np.nanmax(dry_bulb[month_mask]), 1))
fig_temp.add_trace(go.Scatter(
x=months,
y=temps_max,
mode='lines',
name='Max Temperature (°C)',
line=dict(color='red', dash='dash'),
opacity=0.5
))
fig_temp.add_trace(go.Scatter(
x=months,
y=temps_min,
mode='lines',
name='Min Temperature (°C)',
line=dict(color='red', dash='dash'),
opacity=0.5,
fill='tonexty',
fillcolor='rgba(255, 0, 0, 0.1)'
))
fig_temp.update_layout(
title='Monthly Temperatures',
xaxis_title='Month',
yaxis_title='Temperature (°C)',
xaxis=dict(tickmode='array', tickvals=months, ticktext=month_names),
legend=dict(yanchor="top", y=0.99, xanchor="left", x=0.01)
)
st.plotly_chart(fig_temp, use_container_width=True)
fig_hum = go.Figure()
fig_hum.add_trace(go.Scatter(
x=months,
y=humidity_avg,
mode='lines+markers',
name='Avg Humidity (%)',
line=dict(color='blue'),
marker=dict(size=8)
))
if epw_data is not None:
humidity = epw_data[8].values
month_col = epw_data[1].values
humidity_min = []
humidity_max = []
for i in range(1, 13):
month_mask = (month_col == i)
humidity_min.append(round(np.nanmin(humidity[month_mask]), 1))
humidity_max.append(round(np.nanmax(humidity[month_mask]), 1))
fig_hum.add_trace(go.Scatter(
x=months,
y=humidity_max,
mode='lines',
name='Max Humidity (%)',
line=dict(color='blue', dash='dash'),
opacity=0.5
))
fig_hum.add_trace(go.Scatter(
x=months,
y=humidity_min,
mode='lines',
name='Min Humidity (%)',
line=dict(color='blue', dash='dash'),
opacity=0.5,
fill='tonexty',
fillcolor='rgba(0, 0, 255, 0.1)'
))
fig_hum.update_layout(
title='Monthly Relative Humidity',
xaxis_title='Month',
yaxis_title='Relative Humidity (%)',
xaxis=dict(tickmode='array', tickvals=months, ticktext=month_names),
legend=dict(yanchor="top", y=0.99, xanchor="left", x=0.01)
)
st.plotly_chart(fig_hum, use_container_width=True)
def export_to_json(self, file_path: str) -> None:
"""Export all climate data to a JSON file."""
data = {loc_id: loc.to_dict() for loc_id, loc in self.locations.items()}
with open(file_path, 'w') as f:
json.dump(data, f, indent=4)
@classmethod
def from_json(cls, file_path: str) -> 'ClimateData':
"""Load climate data from a JSON file."""
with open(file_path, 'r') as f:
data = json.load(f)
climate_data = cls()
for loc_id, loc_dict in data.items():
location = ClimateLocation(**loc_dict)
climate_data.add_location(location)
return climate_data
if __name__ == "__main__":
climate_data = ClimateData()
session_state = {"building_info": {"country": "Iceland", "city": "Reyugalvik"}, "page": "Climate Data"}
climate_data.display_climate_input(session_state) |