Spaces:
Sleeping
Sleeping
File size: 43,516 Bytes
ca54a52 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 |
"""
ASHRAE tables module for HVAC Load Calculator.
Integrates CLTD, SCL, CLF tables, cooling load calculations, climatic corrections, and visualization.
Combines data from original ashrae_tables.py and enhanced versions with ashrae_tables (3).py.
"""
from typing import Dict, List, Any, Optional, Tuple
import pandas as pd
import numpy as np
import os
import matplotlib.pyplot as plt
from enum import Enum
# Define paths
DATA_DIR = os.path.dirname(os.path.abspath(__file__))
class WallGroup(Enum):
"""Enumeration for ASHRAE wall groups."""
A = "A" # Light construction
B = "B"
C = "C"
D = "D"
E = "E"
F = "F"
G = "G"
H = "H" # Heavy construction
class RoofGroup(Enum):
"""Enumeration for ASHRAE roof groups."""
A = "A" # Light construction
B = "B"
C = "C"
D = "D"
E = "E"
F = "F"
G = "G" # Heavy construction
class Orientation(Enum):
"""Enumeration for building component orientations."""
N = "North"
NE = "Northeast"
E = "East"
SE = "Southeast"
S = "South"
SW = "Southwest"
W = "West"
NW = "Northwest"
HOR = "Horizontal" # For roofs and floors
class ASHRAETables:
"""Class for managing ASHRAE tables for load calculations."""
def __init__(self):
"""Initialize ASHRAE tables."""
# Load tables
self.cltd_wall = self._load_cltd_wall_table()
self.cltd_roof = self._load_cltd_roof_table()
self.scl = self._load_scl_table()
self.clf_lights = self._load_clf_lights_table()
self.clf_people = self._load_clf_people_table()
self.clf_equipment = self._load_clf_equipment_table()
self.heat_gain = self._load_heat_gain_table()
# Load correction factors
self.latitude_correction = self._load_latitude_correction()
self.color_correction = self._load_color_correction()
self.month_correction = self._load_month_correction()
# Load thermal properties and roof classifications
self.thermal_properties = self._load_thermal_properties()
self.roof_classifications = self._load_roof_classifications()
def _validate_cltd_inputs(self, group: str, orientation: str, hour: int, latitude: str, month: str, color: str, is_wall: bool = True) -> Tuple[bool, str]:
"""Validate inputs for CLTD calculations."""
valid_groups = [e.value for e in WallGroup] if is_wall else [e.value for e in RoofGroup]
valid_orientations = [e.value for e in Orientation]
valid_latitudes = ['24N', '32N', '40N', '48N', '56N']
valid_months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
valid_colors = ['Dark', 'Medium', 'Light']
if group not in valid_groups:
return False, f"Invalid {'wall' if is_wall else 'roof'} group: {group}. Valid groups: {valid_groups}"
if orientation not in valid_orientations:
return False, f"Invalid orientation: {orientation}. Valid orientations: {valid_orientations}"
if hour not in range(24):
return False, "Hour must be between 0 and 23."
# Handle numeric latitude values and ensure comprehensive mapping
if latitude not in valid_latitudes:
# Try to convert numeric latitude to standard format
try:
# First, handle string representations that might contain direction indicators
if isinstance(latitude, str):
# Extract numeric part, removing 'N' or 'S'
lat_str = latitude.upper().strip()
num_part = ''.join(c for c in lat_str if c.isdigit() or c == '.')
lat_val = float(num_part)
# Adjust for southern hemisphere if needed
if 'S' in lat_str:
lat_val = -lat_val
else:
# Handle direct numeric input
lat_val = float(latitude)
# Take absolute value for mapping purposes
abs_lat = abs(lat_val)
# Map to the closest standard latitude
if abs_lat < 28:
mapped_latitude = '24N'
elif abs_lat < 36:
mapped_latitude = '32N'
elif abs_lat < 44:
mapped_latitude = '40N'
elif abs_lat < 52:
mapped_latitude = '48N'
else:
mapped_latitude = '56N'
# Use the mapped latitude for validation
latitude = mapped_latitude
except (ValueError, TypeError):
return False, f"Invalid latitude: {latitude}. Valid latitudes: {valid_latitudes}"
if latitude not in valid_latitudes:
return False, f"Invalid latitude: {latitude}. Valid latitudes: {valid_latitudes}"
if month not in valid_months:
return False, f"Invalid month: {month}. Valid months: {valid_months}"
if color not in valid_colors:
return False, f"Invalid color: {color}. Valid colors: {valid_colors}"
return True, "Valid inputs."
def _load_cltd_wall_table(self) -> Dict[str, pd.DataFrame]:
"""
Load CLTD tables for walls at 24°N (July).
Returns: Dictionary of DataFrames with CLTD values for each wall group.
"""
hours = list(range(24))
# CLTD data for wall types 1-12 mapped to groups A-H
wall_data = {
"A": { # Type 1: Lightest construction
'N': [1, 0, -1, -2, -3, -2, 5, 13, 17, 18, 19, 22, 26, 28, 30, 32, 34, 34, 27, 17, 11, 7, 5, 3],
'NE': [1, 0, -1, -2, -3, 0, 17, 39, 51, 53, 48, 39, 32, 30, 30, 30, 30, 28, 24, 18, 13, 10, 7, 5],
'E': [1, 0, -1, -2, -3, 0, 18, 44, 59, 63, 59, 48, 36, 32, 31, 30, 32, 32, 29, 24, 19, 13, 10, 7],
'SE': [1, 0, -1, -2, -3, -2, 8, 25, 38, 44, 45, 42, 35, 32, 31, 30, 32, 32, 27, 24, 18, 13, 10, 7],
'S': [1, 0, -1, -2, -3, -3, -1, 3, 8, 12, 18, 24, 29, 31, 31, 30, 32, 32, 27, 23, 18, 13, 9, 7],
'SW': [1, 0, 1, 2, 3, 3, 1, 3, 8, 13, 17, 22, 27, 42, 59, 73, 30, 32, 27, 23, 18, 20, 12, 8],
'W': [2, 0, 2, 2, 3, 1, 3, 8, 13, 17, 22, 27, 42, 59, 73, 30, 32, 27, 23, 18, 20, 12, 8, 5],
'NW': [2, 0, 1, 2, 2, 3, 1, 3, 8, 13, 17, 22, 27, 42, 59, 73, 30, 32, 27, 23, 18, 20, 12, 8]
},
"B": { # Type 2
'N': [2, 1, 0, -1, -2, -1, 6, 14, 18, 19, 20, 23, 27, 29, 31, 33, 35, 35, 28, 18, 12, 8, 6, 4],
'NE': [2, 1, 0, -1, -2, 1, 18, 40, 52, 54, 49, 40, 33, 31, 31, 31, 31, 29, 25, 19, 14, 11, 8, 6],
'E': [2, 1, 0, -1, -2, 1, 19, 45, 60, 64, 60, 49, 37, 33, 32, 31, 33, 33, 30, 25, 20, 14, 11, 8],
'SE': [2, 1, 0, -1, -2, -1, 9, 26, 39, 45, 46, 43, 36, 33, 32, 31, 33, 33, 28, 25, 19, 14, 11, 8],
'S': [2, 1, 0, -1, -2, -2, 0, 4, 9, 13, 19, 25, 30, 32, 32, 31, 33, 33, 28, 24, 19, 14, 10, 8],
'SW': [2, 1, 2, 3, 4, 4, 2, 4, 9, 14, 18, 23, 28, 43, 60, 74, 31, 33, 28, 24, 19, 21, 13, 9],
'W': [3, 1, 3, 3, 4, 2, 4, 9, 14, 18, 23, 28, 43, 60, 74, 31, 33, 28, 24, 19, 21, 13, 9, 6],
'NW': [3, 1, 2, 3, 3, 4, 2, 4, 9, 14, 18, 23, 28, 43, 60, 74, 31, 33, 28, 24, 19, 21, 13, 9]
},
"C": { # Type 3
'N': [3, 2, 1, 0, -1, 0, 7, 15, 19, 20, 21, 24, 28, 30, 32, 34, 36, 36, 29, 19, 13, 9, 7, 5],
'NE': [3, 2, 1, 0, -1, 2, 19, 41, 53, 55, 50, 41, 34, 32, 32, 32, 32, 30, 26, 20, 15, 12, 9, 7],
'E': [3, 2, 1, 0, -1, 2, 20, 46, 61, 65, 61, 50, 38, 34, 33, 32, 34, 34, 31, 26, 21, 15, 12, 9],
'SE': [3, 2, 1, 0, -1, 0, 10, 27, 40, 46, 47, 44, 37, 34, 33, 32, 34, 34, 29, 26, 20, 15, 12, 9],
'S': [3, 2, 1, 0, -1, -1, 1, 5, 10, 14, 20, 26, 31, 33, 33, 32, 34, 34, 29, 25, 20, 15, 11, 9],
'SW': [3, 2, 3, 4, 5, 5, 3, 5, 10, 15, 19, 24, 29, 44, 61, 75, 32, 34, 29, 25, 20, 22, 14, 10],
'W': [4, 2, 4, 4, 5, 3, 5, 10, 15, 19, 24, 29, 44, 61, 75, 32, 34, 29, 25, 20, 22, 14, 10, 7],
'NW': [4, 2, 3, 4, 4, 5, 3, 5, 10, 15, 19, 24, 29, 44, 61, 75, 32, 34, 29, 25, 20, 22, 14, 10]
},
"D": { # Type 4
'N': [4, 3, 2, 1, 0, 1, 8, 16, 20, 21, 22, 25, 29, 31, 33, 35, 37, 37, 30, 20, 14, 10, 8, 6],
'NE': [4, 3, 2, 1, 0, 3, 20, 42, 54, 56, 51, 42, 35, 33, 33, 33, 33, 31, 27, 21, 16, 13, 10, 8],
'E': [4, 3, 2, 1, 0, 3, 21, 47, 62, 66, 62, 51, 39, 35, 34, 33, 35, 35, 32, 27, 22, 16, 13, 10],
'SE': [4, 3, 2, 1, 0, 1, 11, 28, 41, 47, 48, 45, 38, 35, 34, 33, 35, 35, 30, 27, 21, 16, 13, 10],
'S': [4, 3, 2, 1, 0, 0, 2, 6, 11, 15, 21, 27, 32, 34, 34, 33, 35, 35, 30, 26, 21, 16, 12, 10],
'SW': [4, 3, 4, 5, 6, 6, 4, 6, 11, 16, 20, 25, 30, 45, 62, 76, 33, 35, 30, 26, 21, 23, 15, 11],
'W': [5, 3, 5, 5, 6, 4, 6, 11, 16, 20, 25, 30, 45, 62, 76, 33, 35, 30, 26, 21, 23, 15, 11, 8],
'NW': [5, 3, 4, 5, 5, 6, 4, 6, 11, 16, 20, 25, 30, 45, 62, 76, 33, 35, 30, 26, 21, 23, 15, 11]
},
"E": { # Type 5
'N': [13, 11, 9, 7, 5, 3, 2, 3, 5, 7, 10, 12, 14, 16, 19, 21, 23, 25, 27, 27, 25, 22, 20, 16],
'NE': [13, 11, 8, 7, 5, 3, 3, 6, 12, 20, 26, 31, 33, 33, 32, 32, 32, 33, 31, 29, 27, 24, 21, 18],
'E': [14, 11, 9, 7, 5, 4, 3, 6, 13, 22, 31, 36, 39, 39, 39, 39, 39, 31, 31, 29, 26, 22, 19, 18],
'SE': [13, 10, 8, 6, 5, 3, 2, 4, 8, 14, 20, 25, 28, 30, 30, 30, 30, 30, 28, 26, 24, 21, 18, 16],
'S': [11, 9, 7, 6, 4, 3, 2, 1, 1, 3, 5, 7, 11, 14, 16, 20, 22, 23, 23, 23, 20, 18, 16, 14],
'SW': [18, 15, 12, 9, 7, 5, 3, 3, 3, 4, 5, 8, 11, 14, 16, 20, 26, 32, 33, 31, 41, 40, 36, 31],
'W': [23, 19, 15, 12, 9, 7, 5, 4, 4, 4, 6, 8, 11, 14, 16, 20, 28, 37, 35, 31, 51, 41, 41, 41],
'NW': [21, 17, 14, 11, 8, 6, 4, 3, 3, 4, 6, 8, 11, 14, 16, 20, 28, 37, 35, 31, 41, 41, 41, 41]
},
"F": { # Type 6
'N': [10, 8, 6, 4, 2, 1, 1, 2, 4, 6, 9, 11, 13, 15, 18, 20, 22, 24, 26, 26, 24, 21, 19, 15],
'NE': [10, 8, 6, 4, 2, 2, 2, 5, 11, 19, 25, 30, 32, 32, 31, 31, 31, 32, 30, 28, 26, 23, 20, 17],
'E': [11, 8, 6, 4, 2, 3, 2, 5, 12, 21, 30, 35, 38, 38, 38, 38, 38, 30, 30, 28, 25, 21, 18, 17],
'SE': [10, 7, 5, 3, 2, 2, 1, 3, 7, 13, 19, 24, 27, 29, 29, 29, 29, 29, 27, 25, 23, 20, 17, 15],
'S': [8, 6, 4, 3, 1, 2, 1, 0, 0, 2, 4, 6, 10, 13, 15, 19, 21, 22, 22, 22, 19, 17, 15, 13],
'SW': [15, 12, 9, 6, 4, 3, 2, 2, 2, 3, 4, 7, 10, 13, 15, 19, 25, 31, 32, 30, 40, 39, 35, 30],
'W': [20, 16, 12, 9, 6, 4, 3, 3, 3, 3, 5, 7, 10, 13, 15, 19, 27, 36, 34, 30, 50, 40, 40, 40],
'NW': [18, 14, 11, 8, 5, 4, 3, 2, 2, 3, 5, 7, 10, 13, 15, 19, 27, 36, 34, 30, 40, 40, 40, 40]
},
"G": { # Type 7
'N': [7, 5, 3, 1, -1, 0, 0, 1, 3, 5, 8, 10, 12, 14, 17, 19, 21, 23, 25, 25, 23, 20, 18, 14],
'NE': [7, 5, 3, 1, -1, 1, 1, 4, 10, 18, 24, 29, 31, 31, 30, 30, 30, 31, 29, 27, 25, 22, 19, 16],
'E': [8, 5, 3, 1, -1, 2, 1, 4, 11, 20, 29, 34, 37, 37, 37, 37, 37, 29, 29, 27, 24, 20, 17, 16],
'SE': [7, 4, 2, 0, -1, 1, 0, 2, 6, 12, 18, 23, 26, 28, 28, 28, 28, 28, 26, 24, 22, 19, 16, 14],
'S': [5, 3, 1, 0, -2, 1, 0, -1, -1, 1, 3, 5, 9, 12, 14, 18, 20, 21, 21, 21, 18, 16, 14, 12],
'SW': [12, 9, 6, 3, 1, 2, 1, 1, 1, 2, 3, 6, 9, 12, 14, 18, 24, 30, 31, 29, 39, 38, 34, 29],
'W': [17, 13, 9, 6, 3, 2, 2, 2, 2, 2, 4, 6, 9, 12, 14, 18, 26, 35, 33, 29, 49, 39, 39, 39],
'NW': [15, 11, 8, 5, 2, 3, 2, 1, 1, 2, 4, 6, 9, 12, 14, 18, 26, 35, 33, 29, 39, 39, 39, 39]
},
"H": { # Interpolated from types 8-12: Heaviest construction
'N': [4, 2, 0, -2, -4, -1, -1, 0, 2, 4, 7, 9, 11, 13, 16, 18, 20, 22, 24, 24, 22, 19, 17, 13],
'NE': [4, 2, 0, -2, -4, 0, 0, 3, 9, 17, 23, 28, 30, 30, 29, 29, 29, 30, 28, 26, 24, 21, 18, 15],
'E': [5, 2, 0, -2, -4, 1, 0, 3, 10, 19, 28, 33, 36, 36, 36, 36, 36, 28, 28, 26, 23, 19, 16, 15],
'SE': [4, 1, -1, -3, -4, 0, -1, 1, 5, 11, 17, 22, 25, 27, 27, 27, 27, 27, 25, 23, 21, 18, 15, 13],
'S': [2, 0, -2, -3, -5, 0, -1, -2, -2, 0, 2, 4, 8, 11, 13, 17, 19, 20, 20, 20, 17, 15, 13, 11],
'SW': [9, 6, 3, 0, -2, 1, 0, 0, 0, 1, 2, 5, 8, 11, 13, 17, 23, 29, 30, 28, 38, 37, 33, 28],
'W': [14, 10, 6, 3, 0, 1, 1, 1, 1, 1, 3, 5, 8, 11, 13, 17, 25, 34, 32, 28, 48, 38, 38, 38],
'NW': [12, 8, 5, 2, -1, 2, 1, 0, 0, 1, 3, 5, 8, 11, 13, 17, 25, 34, 32, 28, 38, 38, 38, 38]
}
}
wall_groups = {group: pd.DataFrame(data, index=hours) for group, data in wall_data.items()}
return wall_groups
def _load_cltd_roof_table(self) -> Dict[str, pd.DataFrame]:
"""
Load CLTD tables for roofs at 24°N, 36°N, 48°N (July).
Returns: Dictionary of DataFrames with CLTD values for each roof group and latitude.
"""
hours = list(range(24))
# CLTD data for roof types mapped to groups A-G across latitudes
roof_data = {
"24N": {
"A": [0, 4, 5, 6, 6, 3, 9, 16, 44, 62, 76, 87, 92, 92, 86, 74, 58, 39, 23, 14, 8, 4, 2, 0], # Type 1
"B": [12, 8, 5, 2, 0, -2, -2, 3, 11, 22, 35, 47, 59, 68, 74, 77, 74, 68, 58, 47, 37, 29, 22, 16], # Type 3
"C": [21, 16, 12, 8, 5, 3, 1, 1, 1, 10, 19, 20, 22, 23, 49, 49, 54, 58, 58, 56, 52, 47, 42, 37], # Type 5
"D": [31, 25, 20, 16, 12, 9, 6, 4, 3, 5, 10, 17, 26, 36, 46, 54, 61, 65, 66, 63, 58, 51, 44, 47], # Type 9
"E": [34, 31, 28, 25, 22, 20, 17, 16, 15, 19, 23, 28, 29, 32, 38, 38, 43, 43, 49, 49, 49, 46, 43, 40], # Type 13
"F": [35, 32, 30, 28, 25, 23, 21, 19, 20, 22, 23, 23, 24, 25, 39, 39, 40, 40, 40, 45, 46, 46, 44, 42], # Type 14
"G": [36, 33, 31, 29, 27, 25, 23, 21, 20, 22, 24, 25, 26, 27, 40, 41, 42, 42, 42, 47, 48, 48, 45, 43] # Interpolated
},
"36N": {
"A": [0, 2, 4, 5, 6, 6, 12, 28, 45, 61, 75, 84, 90, 90, 84, 79, 71, 62, 66, 59, 50, 42, 47, 0], # Type 1
"B": [12, 8, 5, 2, 0, -2, -1, 14, 13, 24, 25, 26, 27, 28, 38, 39, 40, 40, 43, 45, 46, 46, 43, 40], # Type 3
"C": [21, 16, 12, 8, 5, 3, 1, 12, 15, 12, 21, 22, 23, 32, 39, 40, 40, 40, 40, 45, 46, 46, 43, 40], # Type 5
"D": [32, 26, 21, 16, 13, 10, 8, 14, 17, 19, 20, 22, 23, 24, 39, 40, 40, 40, 40, 45, 46, 46, 43, 40], # Type 9
"E": [34, 31, 28, 25, 23, 20, 18, 16, 16, 20, 22, 22, 23, 24, 39, 39, 40, 40, 40, 45, 46, 46, 44, 42], # Type 13
"F": [35, 32, 30, 28, 25, 23, 21, 19, 20, 22, 23, 23, 24, 25, 39, 39, 40, 40, 40, 45, 46, 46, 44, 42], # Type 14
"G": [36, 33, 31, 29, 27, 25, 23, 21, 20, 22, 24, 25, 26, 27, 40, 41, 42, 42, 42, 47, 48, 48, 45, 43] # Interpolated
},
"48N": {
"A": [0, 2, 4, 5, 6, 5, 3, 15, 29, 44, 58, 69, 78, 83, 83, 79, 71, 59, 44, 49, 49, 49, 5, 2], # Type 1
"B": [12, 8, 5, 2, 0, -1, 1, 16, 16, 20, 22, 23, 24, 25, 39, 39, 40, 40, 40, 45, 46, 46, 43, 40], # Type 3
"C": [21, 16, 12, 8, 5, 3, 2, 16, 19, 20, 22, 23, 24, 25, 39, 39, 40, 40, 40, 45, 46, 46, 43, 40], # Type 5
"D": [31, 26, 21, 16, 12, 9, 6, 5, 5, 20, 22, 23, 24, 25, 39, 39, 40, 40, 40, 45, 46, 46, 43, 40], # Type 9
"E": [33, 30, 27, 25, 22, 20, 17, 16, 16, 20, 22, 23, 24, 25, 39, 39, 40, 40, 40, 47, 48, 47, 45, 40], # Type 13
"F": [34, 32, 29, 27, 25, 23, 21, 20, 19, 20, 22, 23, 24, 25, 39, 39, 40, 40, 40, 48, 48, 48, 43, 40], # Type 14
"G": [35, 33, 31, 29, 27, 25, 23, 21, 20, 22, 24, 25, 26, 27, 40, 41, 42, 42, 42, 48, 49, 49, 45, 43] # Interpolated
}
}
roof_groups = {}
for lat, groups in roof_data.items():
for group, data in groups.items():
roof_groups[f"{group}_{lat}"] = pd.DataFrame({"HOR": data}, index=hours)
return roof_groups
def _load_scl_table(self) -> Dict[str, pd.DataFrame]:
"""
Load SCL (Solar Cooling Load) tables for windows.
Returns: Dictionary of DataFrames with SCL values for each latitude/month.
"""
hours = list(range(24))
# Base SCL data for 40°N (July)
scl_40n_jul = {
"N": [11, 8, 6, 6, 6, 9, 13, 16, 19, 21, 22, 23, 23, 22, 20, 17, 14, 11, 11, 11, 11, 11, 11, 11],
"NE": [11, 8, 6, 6, 6, 19, 75, 113, 121, 103, 75, 40, 31, 27, 23, 19, 14, 11, 11, 11, 11, 11, 11, 11],
"E": [11, 8, 6, 6, 6, 13, 55, 159, 232, 251, 222, 157, 82, 43, 32, 24, 17, 11, 11, 11, 11, 11, 11, 11],
"SE": [11, 8, 6, 6, 6, 10, 33, 98, 187, 251, 276, 264, 214, 139, 74, 37, 21, 11, 11, 11, 11, 11, 11, 11],
"S": [11, 8, 6, 6, 6, 8, 14, 27, 66, 139, 209, 254, 268, 251, 203, 139, 66, 27, 14, 11, 11, 11, 11, 11],
"SW": [11, 8, 6, 6, 6, 8, 14, 19, 24, 37, 74, 139, 214, 264, 276, 251, 187, 98, 33, 14, 11, 11, 11, 11],
"W": [11, 8, 6, 6, 6, 8, 14, 19, 24, 32, 43, 82, 157, 222, 251, 232, 159, 55, 13, 11, 11, 11, 11, 11],
"NW": [11, 8, 6, 6, 6, 8, 14, 19, 24, 27, 31, 40, 75, 103, 121, 113, 75, 19, 11, 11, 11, 11, 11, 11],
"HOR": [11, 8, 6, 6, 6, 19, 69, 135, 201, 254, 290, 308, 308, 290, 254, 201, 135, 69, 19, 11, 11, 11, 11, 11]
}
scl_tables = {"40N_Jul": pd.DataFrame(scl_40n_jul, index=hours)}
latitudes = ["24N", "32N", "40N", "48N", "56N"]
months = ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]
for lat in latitudes:
for month in months:
key = f"{lat}_{month}"
if key == "40N_Jul":
continue
lat_factor = (40 - float(lat[:-1])) / 40
month_idx = months.index(month)
month_factor = 1 + (month_idx - 6) / 24
scl_data = {}
for orient in scl_40n_jul:
base_scl = scl_40n_jul[orient]
scl_data[orient] = [max(6, round(v * (1 - lat_factor * 0.2) * month_factor)) for v in base_scl]
scl_tables[key] = pd.DataFrame(scl_data, index=hours)
return scl_tables
def _load_clf_lights_table(self) -> pd.DataFrame:
"""
Load CLF (Cooling Load Factor) table for lights.
Returns: DataFrame with CLF values for lights by zone type and hours.
"""
hours = list(range(24))
clf_lights_data = {
"A_8h": [0.85, 0.92, 0.95, 0.95, 0.97, 0.97, 0.98, 0.13, 0.06, 0.04, 0.03, 0.02, 0.02, 0.02, 0.02, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01],
"A_10h": [0.85, 0.93, 0.95, 0.97, 0.97, 0.98, 0.98, 0.98, 0.98, 0.98, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02],
"A_12h": [0.86, 0.93, 0.96, 0.97, 0.97, 0.98, 0.98, 0.98, 0.98, 0.98, 0.98, 0.98, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02],
"B_8h": [0.75, 0.85, 0.90, 0.93, 0.94, 0.95, 0.95, 0.95, 0.12, 0.08, 0.05, 0.04, 0.04, 0.03, 0.03, 0.03, 0.03, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02],
"B_10h": [0.75, 0.86, 0.91, 0.93, 0.94, 0.95, 0.95, 0.95, 0.96, 0.97, 0.24, 0.13, 0.08, 0.06, 0.05, 0.04, 0.04, 0.03, 0.03, 0.03, 0.03, 0.03, 0.02, 0.02],
"B_12h": [0.76, 0.86, 0.91, 0.93, 0.95, 0.95, 0.95, 0.95, 0.97, 0.97, 0.97, 0.97, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03],
"C_8h": [0.70, 0.80, 0.85, 0.88, 0.90, 0.92, 0.93, 0.94, 0.10, 0.07, 0.04, 0.03, 0.03, 0.02, 0.02, 0.02, 0.02, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01],
"C_10h": [0.70, 0.81, 0.86, 0.89, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.20, 0.11, 0.07, 0.05, 0.04, 0.03, 0.03, 0.02, 0.02, 0.02, 0.02, 0.02, 0.01, 0.01],
"C_12h": [0.71, 0.82, 0.87, 0.90, 0.92, 0.93, 0.94, 0.95, 0.96, 0.96, 0.96, 0.96, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02],
"D_8h": [0.65, 0.75, 0.80, 0.83, 0.85, 0.87, 0.88, 0.89, 0.08, 0.06, 0.03, 0.02, 0.02, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01],
"D_10h": [0.65, 0.76, 0.81, 0.84, 0.86, 0.88, 0.89, 0.90, 0.91, 0.92, 0.16, 0.09, 0.06, 0.04, 0.03, 0.02, 0.02, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01],
"D_12h": [0.66, 0.77, 0.82, 0.85, 0.87, 0.89, 0.90, 0.91, 0.92, 0.92, 0.92, 0.92, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01]
}
return pd.DataFrame(clf_lights_data, index=hours)
def _load_clf_people_table(self) -> pd.DataFrame:
"""
Load CLF (Cooling Load Factor) table for people.
Returns: DataFrame with CLF values for people by zone type and hours.
"""
hours = list(range(24))
clf_people_data = {
"A_2h": [0.75, 0.88, 0.18, 0.08, 0.04, 0.02, 0.01, 0.01, 0.01, 0.01, 0.01, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00],
"A_4h": [0.75, 0.88, 0.93, 0.95, 0.97, 0.10, 0.05, 0.03, 0.02, 0.02, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00],
"A_6h": [0.75, 0.88, 0.93, 0.95, 0.97, 0.97, 0.33, 0.11, 0.06, 0.04, 0.03, 0.02, 0.02, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.00, 0.00, 0.00, 0.00, 0.00],
"B_2h": [0.65, 0.75, 0.81, 0.85, 0.89, 0.91, 0.93, 0.95, 0.96, 0.97, 0.98, 0.98, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0.02, 0.02, 0.02, 0.02, 0.02],
"B_4h": [0.65, 0.75, 0.82, 0.87, 0.90, 0.92, 0.94, 0.95, 0.96, 0.97, 0.98, 0.98, 0.99, 0.99, 0.99, 0.99, 0.99, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02],
"B_6h": [0.65, 0.75, 0.82, 0.87, 0.90, 0.92, 0.94, 0.95, 0.96, 0.97, 0.98, 0.98, 0.99, 0.99, 0.99, 0.99, 0.99, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02],
"C_2h": [0.60, 0.70, 0.76, 0.80, 0.84, 0.86, 0.88, 0.90, 0.91, 0.92, 0.93, 0.93, 0.94, 0.94, 0.94, 0.94, 0.94, 0.94, 0.94, 0.01, 0.01, 0.01, 0.01, 0.01],
"C_4h": [0.60, 0.70, 0.77, 0.82, 0.85, 0.87, 0.89, 0.90, 0.91, 0.92, 0.93, 0.93, 0.94, 0.94, 0.94, 0.94, 0.94, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01],
"C_6h": [0.60, 0.70, 0.77, 0.82, 0.85, 0.87, 0.89, 0.90, 0.91, 0.92, 0.93, 0.93, 0.94, 0.94, 0.94, 0.94, 0.94, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01],
"D_2h": [0.55, 0.65, 0.71, 0.75, 0.79, 0.81, 0.83, 0.85, 0.86, 0.87, 0.88, 0.88, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.00, 0.00, 0.00, 0.00, 0.00],
"D_4h": [0.55, 0.65, 0.72, 0.77, 0.80, 0.82, 0.84, 0.85, 0.86, 0.87, 0.88, 0.88, 0.89, 0.89, 0.89, 0.89, 0.89, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00],
"D_6h": [0.55, 0.65, 0.72, 0.77, 0.80, 0.82, 0.84, 0.85, 0.86, 0.87, 0.88, 0.88, 0.89, 0.89, 0.89, 0.89, 0.89, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00]
}
return pd.DataFrame(clf_people_data, index=hours)
def _load_clf_equipment_table(self) -> pd.DataFrame:
"""
Load CLF (Cooling Load Factor) table for equipment.
Returns: DataFrame with CLF values for equipment by zone type and hours.
"""
hours = list(range(24))
clf_equipment_data = {
"A_2h": [0.54, 0.83, 0.26, 0.11, 0.05, 0.03, 0.01, 0.01, 0.01, 0.01, 0.01, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00],
"A_4h": [0.64, 0.83, 0.90, 0.93, 0.31, 0.14, 0.07, 0.04, 0.03, 0.03, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00],
"A_6h": [0.64, 0.83, 0.90, 0.93, 0.95, 0.95, 0.33, 0.11, 0.06, 0.04, 0.03, 0.02, 0.02, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.00, 0.00, 0.00, 0.00, 0.00],
"B_2h": [0.50, 0.75, 0.81, 0.85, 0.89, 0.91, 0.93, 0.95, 0.96, 0.97, 0.98, 0.98, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0.02, 0.02, 0.02, 0.02, 0.02],
"B_4h": [0.50, 0.75, 0.82, 0.87, 0.90, 0.92, 0.94, 0.95, 0.96, 0.97, 0.98, 0.98, 0.99, 0.99, 0.99, 0.99, 0.99, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02],
"B_6h": [0.50, 0.75, 0.82, 0.87, 0.90, 0.92, 0.94, 0.95, 0.96, 0.97, 0.98, 0.98, 0.99, 0.99, 0.99, 0.99, 0.99, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02],
"C_2h": [0.46, 0.70, 0.76, 0.80, 0.84, 0.86, 0.88, 0.90, 0.91, 0.92, 0.93, 0.93, 0.94, 0.94, 0.94, 0.94, 0.94, 0.94, 0.94, 0.01, 0.01, 0.01, 0.01, 0.01],
"C_4h": [0.46, 0.70, 0.77, 0.82, 0.85, 0.87, 0.89, 0.90, 0.91, 0.92, 0.93, 0.93, 0.94, 0.94, 0.94, 0.94, 0.94, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01],
"C_6h": [0.46, 0.70, 0.77, 0.82, 0.85, 0.87, 0.89, 0.90, 0.91, 0.92, 0.93, 0.93, 0.94, 0.94, 0.94, 0.94, 0.94, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01],
"D_2h": [0.42, 0.65, 0.71, 0.75, 0.79, 0.81, 0.83, 0.85, 0.86, 0.87, 0.88, 0.88, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.00, 0.00, 0.00, 0.00, 0.00],
"D_4h": [0.42, 0.65, 0.72, 0.77, 0.80, 0.82, 0.84, 0.85, 0.86, 0.87, 0.88, 0.88, 0.89, 0.89, 0.89, 0.89, 0.89, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00],
"D_6h": [0.42, 0.65, 0.72, 0.77, 0.80, 0.82, 0.84, 0.85, 0.86, 0.87, 0.88, 0.88, 0.89, 0.89, 0.89, 0.89, 0.89, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00]
}
return pd.DataFrame(clf_equipment_data, index=hours)
def _load_heat_gain_table(self) -> pd.DataFrame:
"""
Load heat gain table for internal sources.
Returns: DataFrame with heat gain values (Btu/h or Btu/h-ft²).
"""
data = {
"source": ["people_sensible", "people_latent", "lights", "equipment"],
"gain": [250, 200, 3.4, 500]
}
return pd.DataFrame(data)
def _load_thermal_properties(self) -> pd.DataFrame:
"""
Load thermal properties for building materials.
Returns: DataFrame with U-values, R-values, and density.
"""
data = {
"material": [
"Brick_4in", "Brick_8in", "Concrete_6in", "Concrete_12in",
"Wood_1in", "Wood_2in", "Insulation_1in", "Insulation_2in",
"Gypsum_0.5in", "Steel_1in"
],
"U_value": [0.45, 0.32, 0.51, 0.48, 0.12, 0.08, 0.03, 0.015, 0.32, 0.65], # Btu/h-ft²-°F
"R_value": [2.22, 3.13, 1.96, 2.08, 8.33, 12.5, 33.33, 66.67, 3.13, 1.54], # ft²-°F-h/Btu
"density": [120, 120, 140, 140, 35, 35, 1.5, 1.5, 40, 490] # lb/ft³
}
return pd.DataFrame(data)
def _load_roof_classifications(self) -> pd.DataFrame:
"""
Load roof classification data.
Returns: DataFrame with roof type descriptions and properties.
"""
data = {
"type": [1, 2, 3, 4, 5, 8, 9, 10, 13, 14],
"description": [
"Light roof, no insulation", "Light roof, minimal insulation",
"Medium roof, R-10 insulation", "Medium roof, R-15 insulation",
"Heavy roof, R-20 insulation", "Heavy roof, R-25 insulation",
"Concrete slab, R-15 insulation", "Concrete slab, R-20 insulation",
"Metal deck, R-30 insulation", "Metal deck, R-35 insulation"
],
"U_value": [0.5, 0.4, 0.3, 0.25, 0.2, 0.15, 0.18, 0.14, 0.1, 0.08],
"mass": [10, 15, 50, 60, 100, 120, 150, 160, 80, 90] # lb/ft²
}
return pd.DataFrame(data)
def _load_latitude_correction(self) -> Dict[str, Dict[str, float]]:
"""
Load latitude correction factors for CLTD/SCL values.
Returns: Dictionary of correction factors for different latitudes and months.
"""
return {
"24N": {"Jan": -5.0, "Feb": -3.5, "Mar": -1.0, "Apr": 2.0, "May": 4.0, "Jun": 5.0, "Jul": 4.5, "Aug": 3.0, "Sep": 1.0, "Oct": -1.5, "Nov": -4.0, "Dec": -5.5},
"32N": {"Jan": -4.0, "Feb": -2.5, "Mar": 0.0, "Apr": 2.5, "May": 4.5, "Jun": 5.5, "Jul": 5.0, "Aug": 3.5, "Sep": 1.5, "Oct": -0.5, "Nov": -3.0, "Dec": -4.5},
"40N": {"Jan": -3.0, "Feb": -1.5, "Mar": 1.0, "Apr": 3.0, "May": 5.0, "Jun": 6.0, "Jul": 5.5, "Aug": 4.0, "Sep": 2.0, "Oct": 0.0, "Nov": -2.0, "Dec": -3.5},
"48N": {"Jan": -2.0, "Feb": -0.5, "Mar": 2.0, "Apr": 4.0, "May": 6.0, "Jun": 7.0, "Jul": 6.5, "Aug": 5.0, "Sep": 3.0, "Oct": 1.0, "Nov": -1.0, "Dec": -2.5},
"56N": {"Jan": -1.0, "Feb": 0.5, "Mar": 3.0, "Apr": 5.0, "May": 7.0, "Jun": 8.0, "Jul": 7.5, "Aug": 6.0, "Sep": 4.0, "Oct": 2.0, "Nov": 0.0, "Dec": -1.5}
}
def _load_color_correction(self) -> Dict[str, float]:
"""
Load color correction factors for CLTD values.
Returns: Dictionary of correction factors for different colors.
"""
return {"Dark": 0.0, "Medium": -1.0, "Light": -2.0}
def _load_month_correction(self) -> Dict[str, float]:
"""
Load month correction factors for CLTD values.
Returns: Dictionary of correction factors for different months.
"""
return {
"Jan": -6.0, "Feb": -5.0, "Mar": -3.0, "Apr": -1.0, "May": 1.0,
"Jun": 2.0, "Jul": 2.0, "Aug": 2.0, "Sep": 1.0, "Oct": -1.0,
"Nov": -3.0, "Dec": -5.0
}
def _apply_climatic_corrections(self, cltd: float, latitude: str, month: str, color: str, outdoor_temp: float, indoor_temp: float) -> float:
"""
Apply climatic corrections to CLTD values based on latitude, month, color, and temperature.
Args:
cltd (float): Base CLTD value.
latitude (str): Latitude (e.g., '32N').
month (str): Month (e.g., 'Jul').
color (str): Surface color ('Dark', 'Medium', 'Light').
outdoor_temp (float): Outdoor design temperature (°C).
indoor_temp (float): Indoor design temperature (°C).
Returns:
float: Corrected CLTD value (°C).
"""
try:
# Convert temperatures to °F for ASHRAE corrections
outdoor_temp_f = outdoor_temp * 9/5 + 32
indoor_temp_f = indoor_temp * 9/5 + 32
# Get correction factors
lat_corr = self.latitude_correction.get(latitude, {}).get(month, 0.0)
month_corr = self.month_correction.get(month, 0.0)
color_corr = self.color_correction.get(color, 0.0)
# Apply temperature difference correction (ASHRAE CLTD correction formula)
temp_diff = outdoor_temp_f - indoor_temp_f
design_temp_diff = 85 - 78 # ASHRAE base conditions: 85°F outdoor, 78°F indoor
temp_corr = (temp_diff - design_temp_diff) * 0.5556 # Convert °F to °C
# Total correction
corrected_cltd = cltd + lat_corr + month_corr + color_corr + temp_corr
# Ensure non-negative CLTD
return max(0.0, corrected_cltd)
except Exception as e:
raise ValueError(f"Error applying climatic corrections: {str(e)}")
def get_cltd_wall(self, wall_group: str, orientation: str, hour: int) -> float:
"""Get CLTD value for a wall."""
if wall_group not in self.cltd_wall:
raise ValueError(f"Invalid wall group: {wall_group}")
orientation_map = {e.value: e.name for e in Orientation}
orientation_abbr = orientation_map.get(orientation, orientation)
if orientation_abbr not in self.cltd_wall[wall_group].columns:
raise ValueError(f"Invalid orientation: {orientation}")
if hour not in self.cltd_wall[wall_group].index:
raise ValueError(f"Invalid hour: {hour}")
return float(self.cltd_wall[wall_group].loc[hour, orientation_abbr])
def get_cltd_roof(self, roof_group: str, latitude: str, hour: int) -> float:
"""Get CLTD value for a roof."""
# Map latitude to standard format before forming the key
valid_latitudes = ['24N', '36N', '48N']
# Handle numeric or non-standard latitude values
if latitude not in valid_latitudes:
# Try to convert to standard format
try:
# First, handle string representations that might contain direction indicators
if isinstance(latitude, str):
# Extract numeric part, removing 'N' or 'S'
lat_str = latitude.upper().strip()
num_part = ''.join(c for c in lat_str if c.isdigit() or c == '.')
lat_val = float(num_part)
# Adjust for southern hemisphere if needed
if 'S' in lat_str:
lat_val = -lat_val
else:
# Handle direct numeric input
lat_val = float(latitude)
# Take absolute value for mapping purposes
abs_lat = abs(lat_val)
# Map to the closest standard latitude for roof data
if abs_lat < 30:
latitude = '24N'
elif abs_lat < 42:
latitude = '36N'
else:
latitude = '48N'
except (ValueError, TypeError):
raise ValueError(f"Invalid latitude format: {latitude}")
key = f"{roof_group}_{latitude}"
if key not in self.cltd_roof:
raise ValueError(f"Invalid roof group or latitude: {key}")
if hour not in self.cltd_roof[key].index:
raise ValueError(f"Invalid hour: {hour}")
return float(self.cltd_roof[key].loc[hour, "HOR"])
def get_scl(self, latitude: str, month: str, orientation: str, hour: int) -> float:
"""Get SCL value for a window."""
# Map latitude to standard format before forming the key
valid_latitudes = ['24N', '32N', '40N', '48N', '56N']
# Handle numeric or non-standard latitude values
if latitude not in valid_latitudes:
# Try to convert to standard format
try:
# First, handle string representations that might contain direction indicators
if isinstance(latitude, str):
# Extract numeric part, removing 'N' or 'S'
lat_str = latitude.upper().strip()
num_part = ''.join(c for c in lat_str if c.isdigit() or c == '.')
lat_val = float(num_part)
# Adjust for southern hemisphere if needed
if 'S' in lat_str:
lat_val = -lat_val
else:
# Handle direct numeric input
lat_val = float(latitude)
# Take absolute value for mapping purposes
abs_lat = abs(lat_val)
# Map to the closest standard latitude for SCL data
if abs_lat < 28:
latitude = '24N'
elif abs_lat < 36:
latitude = '32N'
elif abs_lat < 44:
latitude = '40N'
elif abs_lat < 52:
latitude = '48N'
else:
latitude = '56N'
except (ValueError, TypeError):
raise ValueError(f"Invalid latitude format: {latitude}")
key = f"{latitude}_{month}"
if key not in self.scl:
raise ValueError(f"Invalid latitude or month: {key}")
orientation_map = {e.value: e.name for e in Orientation}
orientation_abbr = orientation_map.get(orientation, orientation)
if orientation_abbr not in self.scl[key].columns:
raise ValueError(f"Invalid orientation: {orientation}")
if hour not in self.scl[key].index:
raise ValueError(f"Invalid hour: {hour}")
return float(self.scl[key].loc[hour, orientation_abbr])
def get_clf_lights(self, zone_type: str, hours_on: str, hour: int) -> float:
"""Get CLF value for lights."""
key = f"{zone_type}_{hours_on}"
if key not in self.clf_lights.columns:
raise ValueError(f"Invalid zone type or hours: {key}")
if hour not in self.clf_lights.index:
raise ValueError(f"Invalid hour: {hour}")
return float(self.clf_lights.loc[hour, key])
def get_clf_people(self, zone_type: str, hours_occupied: str, hour: int) -> float:
"""Get CLF value for people."""
key = f"{zone_type}_{hours_occupied}"
if key not in self.clf_people.columns:
raise ValueError(f"Invalid zone type or hours: {key}")
if hour not in self.clf_people.index:
raise ValueError(f"Invalid hour: {hour}")
return float(self.clf_people.loc[hour, key])
def get_clf_equipment(self, zone_type: str, hours_operated: str, hour: int) -> float:
"""Get CLF value for equipment."""
key = f"{zone_type}_{hours_operated}"
if key not in self.clf_equipment.columns:
raise ValueError(f"Invalid zone type or hours: {key}")
if hour not in self.clf_equipment.index:
raise ValueError(f"Invalid hour: {hour}")
return float(self.clf_equipment.loc[hour, key])
def get_thermal_property(self, material: str, property_type: str) -> float:
"""
Get thermal property for a material.
Args:
material (str): Material name (e.g., 'Brick_4in').
property_type (str): Property to retrieve ('U_value', 'R_value', 'density').
Returns:
float: Value of the specified thermal property.
Raises:
ValueError: If material or property_type is invalid.
"""
if material not in self.thermal_properties['material'].values:
raise ValueError(f"Invalid material: {material}")
if property_type not in ['U_value', 'R_value', 'density']:
raise ValueError(f"Invalid property type: {property_type}")
return float(self.thermal_properties.loc[self.thermal_properties['material'] == material, property_type].iloc[0])
def get_heat_gain(self, source: str) -> float:
"""
Get heat gain value for an internal source.
Args:
source (str): Source type ('people_sensible', 'people_latent', 'lights', 'equipment').
Returns:
float: Heat gain value (Btu/h or Btu/h-ft²).
Raises:
ValueError: If source is invalid.
"""
if source not in self.heat_gain['source'].values:
raise ValueError(f"Invalid source: {source}")
return float(self.heat_gain.loc[self.heat_gain['source'] == source, 'gain'].iloc[0])
def plot_cooling_load(self, cooling_loads: List[float], title: str = "Cooling Load Profile", filename: str = "cooling_load.png") -> None:
"""
Plot the cooling load profile over 24 hours.
Args:
cooling_loads (List[float]): List of cooling load values for each hour.
title (str): Plot title.
filename (str): Output filename for the plot.
"""
if len(cooling_loads) != 24:
raise ValueError("Cooling loads must contain 24 hourly values")
plt.figure(figsize=(10, 6))
hours = list(range(24))
plt.plot(hours, cooling_loads, marker='o', linestyle='-', color='b')
plt.title(title)
plt.xlabel("Hour of Day")
plt.ylabel("Cooling Load (Btu/h)")
plt.grid(True)
plt.xticks(hours)
plt.savefig(filename)
plt.close()
def calculate_corrected_cltd_wall(self, wall_group: str, orientation: str, hour: int, latitude: str, month: str, color: str, outdoor_temp: float, indoor_temp: float) -> float:
"""
Calculate corrected CLTD for a wall with climatic corrections.
Args:
wall_group (str): Wall group (e.g., 'A', 'B', ..., 'H').
orientation (str): Wall orientation (e.g., 'North', 'East', etc.).
hour (int): Hour of the day (0-23).
latitude (str): Latitude (e.g., '32N').
month (str): Month (e.g., 'Jul').
color (str): Surface color ('Dark', 'Medium', 'Light').
outdoor_temp (float): Outdoor design temperature (°C).
indoor_temp (float): Indoor design temperature (°C).
Returns:
float: Corrected CLTD value (°C).
Raises:
ValueError: If inputs are invalid or correction fails.
"""
valid, message = self._validate_cltd_inputs(wall_group, orientation, hour, latitude, month, color, is_wall=True)
if not valid:
raise ValueError(message)
try:
# Get base CLTD
base_cltd = self.get_cltd_wall(wall_group, orientation, hour)
# Apply climatic corrections
corrected_cltd = self._apply_climatic_corrections(base_cltd, latitude, month, color, outdoor_temp, indoor_temp)
return corrected_cltd
except Exception as e:
raise ValueError(f"Error calculating corrected CLTD for wall: {str(e)}")
def calculate_corrected_cltd_roof(self, roof_group: str, latitude: str, hour: int, month: str, color: str, outdoor_temp: float, indoor_temp: float) -> float:
"""
Calculate corrected CLTD for a roof with climatic corrections.
Args:
roof_group (str): Roof group (e.g., 'A', 'B', ..., 'G').
latitude (str): Latitude (e.g., '24N', '36N', '48N').
hour (int): Hour of the day (0-23).
month (str): Month (e.g., 'Jul').
color (str): Surface color ('Dark', 'Medium', 'Light').
outdoor_temp (float): Outdoor design temperature (°C).
indoor_temp (float): Indoor design temperature (°C).
Returns:
float: Corrected CLTD value (°C).
Raises:
ValueError: If inputs are invalid or correction fails.
"""
valid, message = self._validate_cltd_inputs(roof_group, 'Horizontal', hour, latitude, month, color, is_wall=False)
if not valid:
raise ValueError(message)
try:
# Get base CLTD
base_cltd = self.get_cltd_roof(roof_group, latitude, hour)
# Apply climatic corrections
corrected_cltd = self._apply_climatic_corrections(base_cltd, latitude, month, color, outdoor_temp, indoor_temp)
return corrected_cltd
except Exception as e:
raise ValueError(f"Error calculating corrected CLTD for roof: {str(e)}") |