File size: 43,516 Bytes
ca54a52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
"""
ASHRAE tables module for HVAC Load Calculator.
Integrates CLTD, SCL, CLF tables, cooling load calculations, climatic corrections, and visualization.
Combines data from original ashrae_tables.py and enhanced versions with ashrae_tables (3).py.
"""

from typing import Dict, List, Any, Optional, Tuple
import pandas as pd
import numpy as np
import os
import matplotlib.pyplot as plt
from enum import Enum

# Define paths
DATA_DIR = os.path.dirname(os.path.abspath(__file__))

class WallGroup(Enum):
    """Enumeration for ASHRAE wall groups."""
    A = "A"  # Light construction
    B = "B"
    C = "C"
    D = "D"
    E = "E"
    F = "F"
    G = "G"
    H = "H"  # Heavy construction

class RoofGroup(Enum):
    """Enumeration for ASHRAE roof groups."""
    A = "A"  # Light construction
    B = "B"
    C = "C"
    D = "D"
    E = "E"
    F = "F"
    G = "G"  # Heavy construction

class Orientation(Enum):
    """Enumeration for building component orientations."""
    N = "North"
    NE = "Northeast"
    E = "East"
    SE = "Southeast"
    S = "South"
    SW = "Southwest"
    W = "West"
    NW = "Northwest"
    HOR = "Horizontal"  # For roofs and floors

class ASHRAETables:
    """Class for managing ASHRAE tables for load calculations."""
    
    def __init__(self):
        """Initialize ASHRAE tables."""
        # Load tables
        self.cltd_wall = self._load_cltd_wall_table()
        self.cltd_roof = self._load_cltd_roof_table()
        self.scl = self._load_scl_table()
        self.clf_lights = self._load_clf_lights_table()
        self.clf_people = self._load_clf_people_table()
        self.clf_equipment = self._load_clf_equipment_table()
        self.heat_gain = self._load_heat_gain_table()
        
        # Load correction factors
        self.latitude_correction = self._load_latitude_correction()
        self.color_correction = self._load_color_correction()
        self.month_correction = self._load_month_correction()
        
        # Load thermal properties and roof classifications
        self.thermal_properties = self._load_thermal_properties()
        self.roof_classifications = self._load_roof_classifications()

    def _validate_cltd_inputs(self, group: str, orientation: str, hour: int, latitude: str, month: str, color: str, is_wall: bool = True) -> Tuple[bool, str]:
        """Validate inputs for CLTD calculations."""
        valid_groups = [e.value for e in WallGroup] if is_wall else [e.value for e in RoofGroup]
        valid_orientations = [e.value for e in Orientation]
        valid_latitudes = ['24N', '32N', '40N', '48N', '56N']
        valid_months = ['Jan', 'Feb', 'Mar', 'Apr', 'May', 'Jun', 'Jul', 'Aug', 'Sep', 'Oct', 'Nov', 'Dec']
        valid_colors = ['Dark', 'Medium', 'Light']
    
        if group not in valid_groups:
            return False, f"Invalid {'wall' if is_wall else 'roof'} group: {group}. Valid groups: {valid_groups}"
        if orientation not in valid_orientations:
            return False, f"Invalid orientation: {orientation}. Valid orientations: {valid_orientations}"
        if hour not in range(24):
            return False, "Hour must be between 0 and 23."
            
        # Handle numeric latitude values and ensure comprehensive mapping
        if latitude not in valid_latitudes:
            # Try to convert numeric latitude to standard format
            try:
                # First, handle string representations that might contain direction indicators
                if isinstance(latitude, str):
                    # Extract numeric part, removing 'N' or 'S'
                    lat_str = latitude.upper().strip()
                    num_part = ''.join(c for c in lat_str if c.isdigit() or c == '.')
                    lat_val = float(num_part)
                    
                    # Adjust for southern hemisphere if needed
                    if 'S' in lat_str:
                        lat_val = -lat_val
                else:
                    # Handle direct numeric input
                    lat_val = float(latitude)
                
                # Take absolute value for mapping purposes
                abs_lat = abs(lat_val)
                
                # Map to the closest standard latitude
                if abs_lat < 28:
                    mapped_latitude = '24N'
                elif abs_lat < 36:
                    mapped_latitude = '32N'
                elif abs_lat < 44:
                    mapped_latitude = '40N'
                elif abs_lat < 52:
                    mapped_latitude = '48N'
                else:
                    mapped_latitude = '56N'
                
                # Use the mapped latitude for validation
                latitude = mapped_latitude
                
            except (ValueError, TypeError):
                return False, f"Invalid latitude: {latitude}. Valid latitudes: {valid_latitudes}"
                
        if latitude not in valid_latitudes:
            return False, f"Invalid latitude: {latitude}. Valid latitudes: {valid_latitudes}"
            
        if month not in valid_months:
            return False, f"Invalid month: {month}. Valid months: {valid_months}"
        if color not in valid_colors:
            return False, f"Invalid color: {color}. Valid colors: {valid_colors}"
        return True, "Valid inputs."  

    def _load_cltd_wall_table(self) -> Dict[str, pd.DataFrame]:
        """
        Load CLTD tables for walls at 24°N (July).
        Returns: Dictionary of DataFrames with CLTD values for each wall group.
        """
        hours = list(range(24))
        # CLTD data for wall types 1-12 mapped to groups A-H
        wall_data = {
            "A": {  # Type 1: Lightest construction
                'N': [1, 0, -1, -2, -3, -2, 5, 13, 17, 18, 19, 22, 26, 28, 30, 32, 34, 34, 27, 17, 11, 7, 5, 3],
                'NE': [1, 0, -1, -2, -3, 0, 17, 39, 51, 53, 48, 39, 32, 30, 30, 30, 30, 28, 24, 18, 13, 10, 7, 5],
                'E': [1, 0, -1, -2, -3, 0, 18, 44, 59, 63, 59, 48, 36, 32, 31, 30, 32, 32, 29, 24, 19, 13, 10, 7],
                'SE': [1, 0, -1, -2, -3, -2, 8, 25, 38, 44, 45, 42, 35, 32, 31, 30, 32, 32, 27, 24, 18, 13, 10, 7],
                'S': [1, 0, -1, -2, -3, -3, -1, 3, 8, 12, 18, 24, 29, 31, 31, 30, 32, 32, 27, 23, 18, 13, 9, 7],
                'SW': [1, 0, 1, 2, 3, 3, 1, 3, 8, 13, 17, 22, 27, 42, 59, 73, 30, 32, 27, 23, 18, 20, 12, 8],
                'W': [2, 0, 2, 2, 3, 1, 3, 8, 13, 17, 22, 27, 42, 59, 73, 30, 32, 27, 23, 18, 20, 12, 8, 5],
                'NW': [2, 0, 1, 2, 2, 3, 1, 3, 8, 13, 17, 22, 27, 42, 59, 73, 30, 32, 27, 23, 18, 20, 12, 8]
            },
            "B": {  # Type 2
                'N': [2, 1, 0, -1, -2, -1, 6, 14, 18, 19, 20, 23, 27, 29, 31, 33, 35, 35, 28, 18, 12, 8, 6, 4],
                'NE': [2, 1, 0, -1, -2, 1, 18, 40, 52, 54, 49, 40, 33, 31, 31, 31, 31, 29, 25, 19, 14, 11, 8, 6],
                'E': [2, 1, 0, -1, -2, 1, 19, 45, 60, 64, 60, 49, 37, 33, 32, 31, 33, 33, 30, 25, 20, 14, 11, 8],
                'SE': [2, 1, 0, -1, -2, -1, 9, 26, 39, 45, 46, 43, 36, 33, 32, 31, 33, 33, 28, 25, 19, 14, 11, 8],
                'S': [2, 1, 0, -1, -2, -2, 0, 4, 9, 13, 19, 25, 30, 32, 32, 31, 33, 33, 28, 24, 19, 14, 10, 8],
                'SW': [2, 1, 2, 3, 4, 4, 2, 4, 9, 14, 18, 23, 28, 43, 60, 74, 31, 33, 28, 24, 19, 21, 13, 9],
                'W': [3, 1, 3, 3, 4, 2, 4, 9, 14, 18, 23, 28, 43, 60, 74, 31, 33, 28, 24, 19, 21, 13, 9, 6],
                'NW': [3, 1, 2, 3, 3, 4, 2, 4, 9, 14, 18, 23, 28, 43, 60, 74, 31, 33, 28, 24, 19, 21, 13, 9]
            },
            "C": {  # Type 3
                'N': [3, 2, 1, 0, -1, 0, 7, 15, 19, 20, 21, 24, 28, 30, 32, 34, 36, 36, 29, 19, 13, 9, 7, 5],
                'NE': [3, 2, 1, 0, -1, 2, 19, 41, 53, 55, 50, 41, 34, 32, 32, 32, 32, 30, 26, 20, 15, 12, 9, 7],
                'E': [3, 2, 1, 0, -1, 2, 20, 46, 61, 65, 61, 50, 38, 34, 33, 32, 34, 34, 31, 26, 21, 15, 12, 9],
                'SE': [3, 2, 1, 0, -1, 0, 10, 27, 40, 46, 47, 44, 37, 34, 33, 32, 34, 34, 29, 26, 20, 15, 12, 9],
                'S': [3, 2, 1, 0, -1, -1, 1, 5, 10, 14, 20, 26, 31, 33, 33, 32, 34, 34, 29, 25, 20, 15, 11, 9],
                'SW': [3, 2, 3, 4, 5, 5, 3, 5, 10, 15, 19, 24, 29, 44, 61, 75, 32, 34, 29, 25, 20, 22, 14, 10],
                'W': [4, 2, 4, 4, 5, 3, 5, 10, 15, 19, 24, 29, 44, 61, 75, 32, 34, 29, 25, 20, 22, 14, 10, 7],
                'NW': [4, 2, 3, 4, 4, 5, 3, 5, 10, 15, 19, 24, 29, 44, 61, 75, 32, 34, 29, 25, 20, 22, 14, 10]
            },
            "D": {  # Type 4
                'N': [4, 3, 2, 1, 0, 1, 8, 16, 20, 21, 22, 25, 29, 31, 33, 35, 37, 37, 30, 20, 14, 10, 8, 6],
                'NE': [4, 3, 2, 1, 0, 3, 20, 42, 54, 56, 51, 42, 35, 33, 33, 33, 33, 31, 27, 21, 16, 13, 10, 8],
                'E': [4, 3, 2, 1, 0, 3, 21, 47, 62, 66, 62, 51, 39, 35, 34, 33, 35, 35, 32, 27, 22, 16, 13, 10],
                'SE': [4, 3, 2, 1, 0, 1, 11, 28, 41, 47, 48, 45, 38, 35, 34, 33, 35, 35, 30, 27, 21, 16, 13, 10],
                'S': [4, 3, 2, 1, 0, 0, 2, 6, 11, 15, 21, 27, 32, 34, 34, 33, 35, 35, 30, 26, 21, 16, 12, 10],
                'SW': [4, 3, 4, 5, 6, 6, 4, 6, 11, 16, 20, 25, 30, 45, 62, 76, 33, 35, 30, 26, 21, 23, 15, 11],
                'W': [5, 3, 5, 5, 6, 4, 6, 11, 16, 20, 25, 30, 45, 62, 76, 33, 35, 30, 26, 21, 23, 15, 11, 8],
                'NW': [5, 3, 4, 5, 5, 6, 4, 6, 11, 16, 20, 25, 30, 45, 62, 76, 33, 35, 30, 26, 21, 23, 15, 11]
            },
            "E": {  # Type 5
                'N': [13, 11, 9, 7, 5, 3, 2, 3, 5, 7, 10, 12, 14, 16, 19, 21, 23, 25, 27, 27, 25, 22, 20, 16],
                'NE': [13, 11, 8, 7, 5, 3, 3, 6, 12, 20, 26, 31, 33, 33, 32, 32, 32, 33, 31, 29, 27, 24, 21, 18],
                'E': [14, 11, 9, 7, 5, 4, 3, 6, 13, 22, 31, 36, 39, 39, 39, 39, 39, 31, 31, 29, 26, 22, 19, 18],
                'SE': [13, 10, 8, 6, 5, 3, 2, 4, 8, 14, 20, 25, 28, 30, 30, 30, 30, 30, 28, 26, 24, 21, 18, 16],
                'S': [11, 9, 7, 6, 4, 3, 2, 1, 1, 3, 5, 7, 11, 14, 16, 20, 22, 23, 23, 23, 20, 18, 16, 14],
                'SW': [18, 15, 12, 9, 7, 5, 3, 3, 3, 4, 5, 8, 11, 14, 16, 20, 26, 32, 33, 31, 41, 40, 36, 31],
                'W': [23, 19, 15, 12, 9, 7, 5, 4, 4, 4, 6, 8, 11, 14, 16, 20, 28, 37, 35, 31, 51, 41, 41, 41],
                'NW': [21, 17, 14, 11, 8, 6, 4, 3, 3, 4, 6, 8, 11, 14, 16, 20, 28, 37, 35, 31, 41, 41, 41, 41]
            },
            "F": {  # Type 6
                'N': [10, 8, 6, 4, 2, 1, 1, 2, 4, 6, 9, 11, 13, 15, 18, 20, 22, 24, 26, 26, 24, 21, 19, 15],
                'NE': [10, 8, 6, 4, 2, 2, 2, 5, 11, 19, 25, 30, 32, 32, 31, 31, 31, 32, 30, 28, 26, 23, 20, 17],
                'E': [11, 8, 6, 4, 2, 3, 2, 5, 12, 21, 30, 35, 38, 38, 38, 38, 38, 30, 30, 28, 25, 21, 18, 17],
                'SE': [10, 7, 5, 3, 2, 2, 1, 3, 7, 13, 19, 24, 27, 29, 29, 29, 29, 29, 27, 25, 23, 20, 17, 15],
                'S': [8, 6, 4, 3, 1, 2, 1, 0, 0, 2, 4, 6, 10, 13, 15, 19, 21, 22, 22, 22, 19, 17, 15, 13],
                'SW': [15, 12, 9, 6, 4, 3, 2, 2, 2, 3, 4, 7, 10, 13, 15, 19, 25, 31, 32, 30, 40, 39, 35, 30],
                'W': [20, 16, 12, 9, 6, 4, 3, 3, 3, 3, 5, 7, 10, 13, 15, 19, 27, 36, 34, 30, 50, 40, 40, 40],
                'NW': [18, 14, 11, 8, 5, 4, 3, 2, 2, 3, 5, 7, 10, 13, 15, 19, 27, 36, 34, 30, 40, 40, 40, 40]
            },
            "G": {  # Type 7
                'N': [7, 5, 3, 1, -1, 0, 0, 1, 3, 5, 8, 10, 12, 14, 17, 19, 21, 23, 25, 25, 23, 20, 18, 14],
                'NE': [7, 5, 3, 1, -1, 1, 1, 4, 10, 18, 24, 29, 31, 31, 30, 30, 30, 31, 29, 27, 25, 22, 19, 16],
                'E': [8, 5, 3, 1, -1, 2, 1, 4, 11, 20, 29, 34, 37, 37, 37, 37, 37, 29, 29, 27, 24, 20, 17, 16],
                'SE': [7, 4, 2, 0, -1, 1, 0, 2, 6, 12, 18, 23, 26, 28, 28, 28, 28, 28, 26, 24, 22, 19, 16, 14],
                'S': [5, 3, 1, 0, -2, 1, 0, -1, -1, 1, 3, 5, 9, 12, 14, 18, 20, 21, 21, 21, 18, 16, 14, 12],
                'SW': [12, 9, 6, 3, 1, 2, 1, 1, 1, 2, 3, 6, 9, 12, 14, 18, 24, 30, 31, 29, 39, 38, 34, 29],
                'W': [17, 13, 9, 6, 3, 2, 2, 2, 2, 2, 4, 6, 9, 12, 14, 18, 26, 35, 33, 29, 49, 39, 39, 39],
                'NW': [15, 11, 8, 5, 2, 3, 2, 1, 1, 2, 4, 6, 9, 12, 14, 18, 26, 35, 33, 29, 39, 39, 39, 39]
            },
            "H": {  # Interpolated from types 8-12: Heaviest construction
                'N': [4, 2, 0, -2, -4, -1, -1, 0, 2, 4, 7, 9, 11, 13, 16, 18, 20, 22, 24, 24, 22, 19, 17, 13],
                'NE': [4, 2, 0, -2, -4, 0, 0, 3, 9, 17, 23, 28, 30, 30, 29, 29, 29, 30, 28, 26, 24, 21, 18, 15],
                'E': [5, 2, 0, -2, -4, 1, 0, 3, 10, 19, 28, 33, 36, 36, 36, 36, 36, 28, 28, 26, 23, 19, 16, 15],
                'SE': [4, 1, -1, -3, -4, 0, -1, 1, 5, 11, 17, 22, 25, 27, 27, 27, 27, 27, 25, 23, 21, 18, 15, 13],
                'S': [2, 0, -2, -3, -5, 0, -1, -2, -2, 0, 2, 4, 8, 11, 13, 17, 19, 20, 20, 20, 17, 15, 13, 11],
                'SW': [9, 6, 3, 0, -2, 1, 0, 0, 0, 1, 2, 5, 8, 11, 13, 17, 23, 29, 30, 28, 38, 37, 33, 28],
                'W': [14, 10, 6, 3, 0, 1, 1, 1, 1, 1, 3, 5, 8, 11, 13, 17, 25, 34, 32, 28, 48, 38, 38, 38],
                'NW': [12, 8, 5, 2, -1, 2, 1, 0, 0, 1, 3, 5, 8, 11, 13, 17, 25, 34, 32, 28, 38, 38, 38, 38]
            }
        }
        wall_groups = {group: pd.DataFrame(data, index=hours) for group, data in wall_data.items()}
        return wall_groups

    def _load_cltd_roof_table(self) -> Dict[str, pd.DataFrame]:
        """
        Load CLTD tables for roofs at 24°N, 36°N, 48°N (July).
        Returns: Dictionary of DataFrames with CLTD values for each roof group and latitude.
        """
        hours = list(range(24))
        # CLTD data for roof types mapped to groups A-G across latitudes
        roof_data = {
            "24N": {
                "A": [0, 4, 5, 6, 6, 3, 9, 16, 44, 62, 76, 87, 92, 92, 86, 74, 58, 39, 23, 14, 8, 4, 2, 0],  # Type 1
                "B": [12, 8, 5, 2, 0, -2, -2, 3, 11, 22, 35, 47, 59, 68, 74, 77, 74, 68, 58, 47, 37, 29, 22, 16],  # Type 3
                "C": [21, 16, 12, 8, 5, 3, 1, 1, 1, 10, 19, 20, 22, 23, 49, 49, 54, 58, 58, 56, 52, 47, 42, 37],  # Type 5
                "D": [31, 25, 20, 16, 12, 9, 6, 4, 3, 5, 10, 17, 26, 36, 46, 54, 61, 65, 66, 63, 58, 51, 44, 47],  # Type 9
                "E": [34, 31, 28, 25, 22, 20, 17, 16, 15, 19, 23, 28, 29, 32, 38, 38, 43, 43, 49, 49, 49, 46, 43, 40],  # Type 13
                "F": [35, 32, 30, 28, 25, 23, 21, 19, 20, 22, 23, 23, 24, 25, 39, 39, 40, 40, 40, 45, 46, 46, 44, 42],  # Type 14
                "G": [36, 33, 31, 29, 27, 25, 23, 21, 20, 22, 24, 25, 26, 27, 40, 41, 42, 42, 42, 47, 48, 48, 45, 43]  # Interpolated
            },
            "36N": {
                "A": [0, 2, 4, 5, 6, 6, 12, 28, 45, 61, 75, 84, 90, 90, 84, 79, 71, 62, 66, 59, 50, 42, 47, 0],  # Type 1
                "B": [12, 8, 5, 2, 0, -2, -1, 14, 13, 24, 25, 26, 27, 28, 38, 39, 40, 40, 43, 45, 46, 46, 43, 40],  # Type 3
                "C": [21, 16, 12, 8, 5, 3, 1, 12, 15, 12, 21, 22, 23, 32, 39, 40, 40, 40, 40, 45, 46, 46, 43, 40],  # Type 5
                "D": [32, 26, 21, 16, 13, 10, 8, 14, 17, 19, 20, 22, 23, 24, 39, 40, 40, 40, 40, 45, 46, 46, 43, 40],  # Type 9
                "E": [34, 31, 28, 25, 23, 20, 18, 16, 16, 20, 22, 22, 23, 24, 39, 39, 40, 40, 40, 45, 46, 46, 44, 42],  # Type 13
                "F": [35, 32, 30, 28, 25, 23, 21, 19, 20, 22, 23, 23, 24, 25, 39, 39, 40, 40, 40, 45, 46, 46, 44, 42],  # Type 14
                "G": [36, 33, 31, 29, 27, 25, 23, 21, 20, 22, 24, 25, 26, 27, 40, 41, 42, 42, 42, 47, 48, 48, 45, 43]  # Interpolated
            },
            "48N": {
                "A": [0, 2, 4, 5, 6, 5, 3, 15, 29, 44, 58, 69, 78, 83, 83, 79, 71, 59, 44, 49, 49, 49, 5, 2],  # Type 1
                "B": [12, 8, 5, 2, 0, -1, 1, 16, 16, 20, 22, 23, 24, 25, 39, 39, 40, 40, 40, 45, 46, 46, 43, 40],  # Type 3
                "C": [21, 16, 12, 8, 5, 3, 2, 16, 19, 20, 22, 23, 24, 25, 39, 39, 40, 40, 40, 45, 46, 46, 43, 40],  # Type 5
                "D": [31, 26, 21, 16, 12, 9, 6, 5, 5, 20, 22, 23, 24, 25, 39, 39, 40, 40, 40, 45, 46, 46, 43, 40],  # Type 9
                "E": [33, 30, 27, 25, 22, 20, 17, 16, 16, 20, 22, 23, 24, 25, 39, 39, 40, 40, 40, 47, 48, 47, 45, 40],  # Type 13
                "F": [34, 32, 29, 27, 25, 23, 21, 20, 19, 20, 22, 23, 24, 25, 39, 39, 40, 40, 40, 48, 48, 48, 43, 40],  # Type 14
                "G": [35, 33, 31, 29, 27, 25, 23, 21, 20, 22, 24, 25, 26, 27, 40, 41, 42, 42, 42, 48, 49, 49, 45, 43]  # Interpolated
            }
        }
        roof_groups = {}
        for lat, groups in roof_data.items():
            for group, data in groups.items():
                roof_groups[f"{group}_{lat}"] = pd.DataFrame({"HOR": data}, index=hours)
        return roof_groups

    def _load_scl_table(self) -> Dict[str, pd.DataFrame]:
        """
        Load SCL (Solar Cooling Load) tables for windows.
        Returns: Dictionary of DataFrames with SCL values for each latitude/month.
        """
        hours = list(range(24))
        # Base SCL data for 40°N (July)
        scl_40n_jul = {
            "N": [11, 8, 6, 6, 6, 9, 13, 16, 19, 21, 22, 23, 23, 22, 20, 17, 14, 11, 11, 11, 11, 11, 11, 11],
            "NE": [11, 8, 6, 6, 6, 19, 75, 113, 121, 103, 75, 40, 31, 27, 23, 19, 14, 11, 11, 11, 11, 11, 11, 11],
            "E": [11, 8, 6, 6, 6, 13, 55, 159, 232, 251, 222, 157, 82, 43, 32, 24, 17, 11, 11, 11, 11, 11, 11, 11],
            "SE": [11, 8, 6, 6, 6, 10, 33, 98, 187, 251, 276, 264, 214, 139, 74, 37, 21, 11, 11, 11, 11, 11, 11, 11],
            "S": [11, 8, 6, 6, 6, 8, 14, 27, 66, 139, 209, 254, 268, 251, 203, 139, 66, 27, 14, 11, 11, 11, 11, 11],
            "SW": [11, 8, 6, 6, 6, 8, 14, 19, 24, 37, 74, 139, 214, 264, 276, 251, 187, 98, 33, 14, 11, 11, 11, 11],
            "W": [11, 8, 6, 6, 6, 8, 14, 19, 24, 32, 43, 82, 157, 222, 251, 232, 159, 55, 13, 11, 11, 11, 11, 11],
            "NW": [11, 8, 6, 6, 6, 8, 14, 19, 24, 27, 31, 40, 75, 103, 121, 113, 75, 19, 11, 11, 11, 11, 11, 11],
            "HOR": [11, 8, 6, 6, 6, 19, 69, 135, 201, 254, 290, 308, 308, 290, 254, 201, 135, 69, 19, 11, 11, 11, 11, 11]
        }
        scl_tables = {"40N_Jul": pd.DataFrame(scl_40n_jul, index=hours)}
        latitudes = ["24N", "32N", "40N", "48N", "56N"]
        months = ["Jan", "Feb", "Mar", "Apr", "May", "Jun", "Jul", "Aug", "Sep", "Oct", "Nov", "Dec"]
        for lat in latitudes:
            for month in months:
                key = f"{lat}_{month}"
                if key == "40N_Jul":
                    continue
                lat_factor = (40 - float(lat[:-1])) / 40
                month_idx = months.index(month)
                month_factor = 1 + (month_idx - 6) / 24
                scl_data = {}
                for orient in scl_40n_jul:
                    base_scl = scl_40n_jul[orient]
                    scl_data[orient] = [max(6, round(v * (1 - lat_factor * 0.2) * month_factor)) for v in base_scl]
                scl_tables[key] = pd.DataFrame(scl_data, index=hours)
        return scl_tables

    def _load_clf_lights_table(self) -> pd.DataFrame:
        """
        Load CLF (Cooling Load Factor) table for lights.
        Returns: DataFrame with CLF values for lights by zone type and hours.
        """
        hours = list(range(24))
        clf_lights_data = {
            "A_8h": [0.85, 0.92, 0.95, 0.95, 0.97, 0.97, 0.98, 0.13, 0.06, 0.04, 0.03, 0.02, 0.02, 0.02, 0.02, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01],
            "A_10h": [0.85, 0.93, 0.95, 0.97, 0.97, 0.98, 0.98, 0.98, 0.98, 0.98, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02],
            "A_12h": [0.86, 0.93, 0.96, 0.97, 0.97, 0.98, 0.98, 0.98, 0.98, 0.98, 0.98, 0.98, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02],
            "B_8h": [0.75, 0.85, 0.90, 0.93, 0.94, 0.95, 0.95, 0.95, 0.12, 0.08, 0.05, 0.04, 0.04, 0.03, 0.03, 0.03, 0.03, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02],
            "B_10h": [0.75, 0.86, 0.91, 0.93, 0.94, 0.95, 0.95, 0.95, 0.96, 0.97, 0.24, 0.13, 0.08, 0.06, 0.05, 0.04, 0.04, 0.03, 0.03, 0.03, 0.03, 0.03, 0.02, 0.02],
            "B_12h": [0.76, 0.86, 0.91, 0.93, 0.95, 0.95, 0.95, 0.95, 0.97, 0.97, 0.97, 0.97, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03, 0.03],
            "C_8h": [0.70, 0.80, 0.85, 0.88, 0.90, 0.92, 0.93, 0.94, 0.10, 0.07, 0.04, 0.03, 0.03, 0.02, 0.02, 0.02, 0.02, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01],
            "C_10h": [0.70, 0.81, 0.86, 0.89, 0.91, 0.92, 0.93, 0.94, 0.95, 0.96, 0.20, 0.11, 0.07, 0.05, 0.04, 0.03, 0.03, 0.02, 0.02, 0.02, 0.02, 0.02, 0.01, 0.01],
            "C_12h": [0.71, 0.82, 0.87, 0.90, 0.92, 0.93, 0.94, 0.95, 0.96, 0.96, 0.96, 0.96, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02],
            "D_8h": [0.65, 0.75, 0.80, 0.83, 0.85, 0.87, 0.88, 0.89, 0.08, 0.06, 0.03, 0.02, 0.02, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01],
            "D_10h": [0.65, 0.76, 0.81, 0.84, 0.86, 0.88, 0.89, 0.90, 0.91, 0.92, 0.16, 0.09, 0.06, 0.04, 0.03, 0.02, 0.02, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01],
            "D_12h": [0.66, 0.77, 0.82, 0.85, 0.87, 0.89, 0.90, 0.91, 0.92, 0.92, 0.92, 0.92, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01]
        }
        return pd.DataFrame(clf_lights_data, index=hours)

    def _load_clf_people_table(self) -> pd.DataFrame:
        """
        Load CLF (Cooling Load Factor) table for people.
        Returns: DataFrame with CLF values for people by zone type and hours.
        """
        hours = list(range(24))
        clf_people_data = {
            "A_2h": [0.75, 0.88, 0.18, 0.08, 0.04, 0.02, 0.01, 0.01, 0.01, 0.01, 0.01, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00],
            "A_4h": [0.75, 0.88, 0.93, 0.95, 0.97, 0.10, 0.05, 0.03, 0.02, 0.02, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00],
            "A_6h": [0.75, 0.88, 0.93, 0.95, 0.97, 0.97, 0.33, 0.11, 0.06, 0.04, 0.03, 0.02, 0.02, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.00, 0.00, 0.00, 0.00, 0.00],
            "B_2h": [0.65, 0.75, 0.81, 0.85, 0.89, 0.91, 0.93, 0.95, 0.96, 0.97, 0.98, 0.98, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0.02, 0.02, 0.02, 0.02, 0.02],
            "B_4h": [0.65, 0.75, 0.82, 0.87, 0.90, 0.92, 0.94, 0.95, 0.96, 0.97, 0.98, 0.98, 0.99, 0.99, 0.99, 0.99, 0.99, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02],
            "B_6h": [0.65, 0.75, 0.82, 0.87, 0.90, 0.92, 0.94, 0.95, 0.96, 0.97, 0.98, 0.98, 0.99, 0.99, 0.99, 0.99, 0.99, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02],
            "C_2h": [0.60, 0.70, 0.76, 0.80, 0.84, 0.86, 0.88, 0.90, 0.91, 0.92, 0.93, 0.93, 0.94, 0.94, 0.94, 0.94, 0.94, 0.94, 0.94, 0.01, 0.01, 0.01, 0.01, 0.01],
            "C_4h": [0.60, 0.70, 0.77, 0.82, 0.85, 0.87, 0.89, 0.90, 0.91, 0.92, 0.93, 0.93, 0.94, 0.94, 0.94, 0.94, 0.94, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01],
            "C_6h": [0.60, 0.70, 0.77, 0.82, 0.85, 0.87, 0.89, 0.90, 0.91, 0.92, 0.93, 0.93, 0.94, 0.94, 0.94, 0.94, 0.94, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01],
            "D_2h": [0.55, 0.65, 0.71, 0.75, 0.79, 0.81, 0.83, 0.85, 0.86, 0.87, 0.88, 0.88, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.00, 0.00, 0.00, 0.00, 0.00],
            "D_4h": [0.55, 0.65, 0.72, 0.77, 0.80, 0.82, 0.84, 0.85, 0.86, 0.87, 0.88, 0.88, 0.89, 0.89, 0.89, 0.89, 0.89, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00],
            "D_6h": [0.55, 0.65, 0.72, 0.77, 0.80, 0.82, 0.84, 0.85, 0.86, 0.87, 0.88, 0.88, 0.89, 0.89, 0.89, 0.89, 0.89, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00]
        }
        return pd.DataFrame(clf_people_data, index=hours)

    def _load_clf_equipment_table(self) -> pd.DataFrame:
        """
        Load CLF (Cooling Load Factor) table for equipment.
        Returns: DataFrame with CLF values for equipment by zone type and hours.
        """
        hours = list(range(24))
        clf_equipment_data = {
            "A_2h": [0.54, 0.83, 0.26, 0.11, 0.05, 0.03, 0.01, 0.01, 0.01, 0.01, 0.01, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00],
            "A_4h": [0.64, 0.83, 0.90, 0.93, 0.31, 0.14, 0.07, 0.04, 0.03, 0.03, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00],
            "A_6h": [0.64, 0.83, 0.90, 0.93, 0.95, 0.95, 0.33, 0.11, 0.06, 0.04, 0.03, 0.02, 0.02, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.00, 0.00, 0.00, 0.00, 0.00],
            "B_2h": [0.50, 0.75, 0.81, 0.85, 0.89, 0.91, 0.93, 0.95, 0.96, 0.97, 0.98, 0.98, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0.99, 0.02, 0.02, 0.02, 0.02, 0.02],
            "B_4h": [0.50, 0.75, 0.82, 0.87, 0.90, 0.92, 0.94, 0.95, 0.96, 0.97, 0.98, 0.98, 0.99, 0.99, 0.99, 0.99, 0.99, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02],
            "B_6h": [0.50, 0.75, 0.82, 0.87, 0.90, 0.92, 0.94, 0.95, 0.96, 0.97, 0.98, 0.98, 0.99, 0.99, 0.99, 0.99, 0.99, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02, 0.02],
            "C_2h": [0.46, 0.70, 0.76, 0.80, 0.84, 0.86, 0.88, 0.90, 0.91, 0.92, 0.93, 0.93, 0.94, 0.94, 0.94, 0.94, 0.94, 0.94, 0.94, 0.01, 0.01, 0.01, 0.01, 0.01],
            "C_4h": [0.46, 0.70, 0.77, 0.82, 0.85, 0.87, 0.89, 0.90, 0.91, 0.92, 0.93, 0.93, 0.94, 0.94, 0.94, 0.94, 0.94, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01],
            "C_6h": [0.46, 0.70, 0.77, 0.82, 0.85, 0.87, 0.89, 0.90, 0.91, 0.92, 0.93, 0.93, 0.94, 0.94, 0.94, 0.94, 0.94, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01],
            "D_2h": [0.42, 0.65, 0.71, 0.75, 0.79, 0.81, 0.83, 0.85, 0.86, 0.87, 0.88, 0.88, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.89, 0.00, 0.00, 0.00, 0.00, 0.00],
            "D_4h": [0.42, 0.65, 0.72, 0.77, 0.80, 0.82, 0.84, 0.85, 0.86, 0.87, 0.88, 0.88, 0.89, 0.89, 0.89, 0.89, 0.89, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00],
            "D_6h": [0.42, 0.65, 0.72, 0.77, 0.80, 0.82, 0.84, 0.85, 0.86, 0.87, 0.88, 0.88, 0.89, 0.89, 0.89, 0.89, 0.89, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00, 0.00]
        }
        return pd.DataFrame(clf_equipment_data, index=hours)

    def _load_heat_gain_table(self) -> pd.DataFrame:
        """
        Load heat gain table for internal sources.
        Returns: DataFrame with heat gain values (Btu/h or Btu/h-ft²).
        """
        data = {
            "source": ["people_sensible", "people_latent", "lights", "equipment"],
            "gain": [250, 200, 3.4, 500]
        }
        return pd.DataFrame(data)

    def _load_thermal_properties(self) -> pd.DataFrame:
        """
        Load thermal properties for building materials.
        Returns: DataFrame with U-values, R-values, and density.
        """
        data = {
            "material": [
                "Brick_4in", "Brick_8in", "Concrete_6in", "Concrete_12in", 
                "Wood_1in", "Wood_2in", "Insulation_1in", "Insulation_2in", 
                "Gypsum_0.5in", "Steel_1in"
            ],
            "U_value": [0.45, 0.32, 0.51, 0.48, 0.12, 0.08, 0.03, 0.015, 0.32, 0.65],  # Btu/h-ft²-°F
            "R_value": [2.22, 3.13, 1.96, 2.08, 8.33, 12.5, 33.33, 66.67, 3.13, 1.54],  # ft²-°F-h/Btu
            "density": [120, 120, 140, 140, 35, 35, 1.5, 1.5, 40, 490]  # lb/ft³
        }
        return pd.DataFrame(data)

    def _load_roof_classifications(self) -> pd.DataFrame:
        """
        Load roof classification data.
        Returns: DataFrame with roof type descriptions and properties.
        """
        data = {
            "type": [1, 2, 3, 4, 5, 8, 9, 10, 13, 14],
            "description": [
                "Light roof, no insulation", "Light roof, minimal insulation", 
                "Medium roof, R-10 insulation", "Medium roof, R-15 insulation", 
                "Heavy roof, R-20 insulation", "Heavy roof, R-25 insulation", 
                "Concrete slab, R-15 insulation", "Concrete slab, R-20 insulation", 
                "Metal deck, R-30 insulation", "Metal deck, R-35 insulation"
            ],
            "U_value": [0.5, 0.4, 0.3, 0.25, 0.2, 0.15, 0.18, 0.14, 0.1, 0.08],
            "mass": [10, 15, 50, 60, 100, 120, 150, 160, 80, 90]  # lb/ft²
        }
        return pd.DataFrame(data)

    def _load_latitude_correction(self) -> Dict[str, Dict[str, float]]:
        """
        Load latitude correction factors for CLTD/SCL values.
        Returns: Dictionary of correction factors for different latitudes and months.
        """
        return {
            "24N": {"Jan": -5.0, "Feb": -3.5, "Mar": -1.0, "Apr": 2.0, "May": 4.0, "Jun": 5.0, "Jul": 4.5, "Aug": 3.0, "Sep": 1.0, "Oct": -1.5, "Nov": -4.0, "Dec": -5.5},
            "32N": {"Jan": -4.0, "Feb": -2.5, "Mar": 0.0, "Apr": 2.5, "May": 4.5, "Jun": 5.5, "Jul": 5.0, "Aug": 3.5, "Sep": 1.5, "Oct": -0.5, "Nov": -3.0, "Dec": -4.5},
            "40N": {"Jan": -3.0, "Feb": -1.5, "Mar": 1.0, "Apr": 3.0, "May": 5.0, "Jun": 6.0, "Jul": 5.5, "Aug": 4.0, "Sep": 2.0, "Oct": 0.0, "Nov": -2.0, "Dec": -3.5},
            "48N": {"Jan": -2.0, "Feb": -0.5, "Mar": 2.0, "Apr": 4.0, "May": 6.0, "Jun": 7.0, "Jul": 6.5, "Aug": 5.0, "Sep": 3.0, "Oct": 1.0, "Nov": -1.0, "Dec": -2.5},
            "56N": {"Jan": -1.0, "Feb": 0.5, "Mar": 3.0, "Apr": 5.0, "May": 7.0, "Jun": 8.0, "Jul": 7.5, "Aug": 6.0, "Sep": 4.0, "Oct": 2.0, "Nov": 0.0, "Dec": -1.5}
        }

    def _load_color_correction(self) -> Dict[str, float]:
        """
        Load color correction factors for CLTD values.
        Returns: Dictionary of correction factors for different colors.
        """
        return {"Dark": 0.0, "Medium": -1.0, "Light": -2.0}

    def _load_month_correction(self) -> Dict[str, float]:
        """
        Load month correction factors for CLTD values.
        Returns: Dictionary of correction factors for different months.
        """
        return {
            "Jan": -6.0, "Feb": -5.0, "Mar": -3.0, "Apr": -1.0, "May": 1.0,
            "Jun": 2.0, "Jul": 2.0, "Aug": 2.0, "Sep": 1.0, "Oct": -1.0,
            "Nov": -3.0, "Dec": -5.0
        }

    def _apply_climatic_corrections(self, cltd: float, latitude: str, month: str, color: str, outdoor_temp: float, indoor_temp: float) -> float:
        """
        Apply climatic corrections to CLTD values based on latitude, month, color, and temperature.
        
        Args:
            cltd (float): Base CLTD value.
            latitude (str): Latitude (e.g., '32N').
            month (str): Month (e.g., 'Jul').
            color (str): Surface color ('Dark', 'Medium', 'Light').
            outdoor_temp (float): Outdoor design temperature (°C).
            indoor_temp (float): Indoor design temperature (°C).
        
        Returns:
            float: Corrected CLTD value (°C).
        """
        try:
            # Convert temperatures to °F for ASHRAE corrections
            outdoor_temp_f = outdoor_temp * 9/5 + 32
            indoor_temp_f = indoor_temp * 9/5 + 32
            
            # Get correction factors
            lat_corr = self.latitude_correction.get(latitude, {}).get(month, 0.0)
            month_corr = self.month_correction.get(month, 0.0)
            color_corr = self.color_correction.get(color, 0.0)
            
            # Apply temperature difference correction (ASHRAE CLTD correction formula)
            temp_diff = outdoor_temp_f - indoor_temp_f
            design_temp_diff = 85 - 78  # ASHRAE base conditions: 85°F outdoor, 78°F indoor
            temp_corr = (temp_diff - design_temp_diff) * 0.5556  # Convert °F to °C
            
            # Total correction
            corrected_cltd = cltd + lat_corr + month_corr + color_corr + temp_corr
            
            # Ensure non-negative CLTD
            return max(0.0, corrected_cltd)
        except Exception as e:
            raise ValueError(f"Error applying climatic corrections: {str(e)}")

    def get_cltd_wall(self, wall_group: str, orientation: str, hour: int) -> float:
        """Get CLTD value for a wall."""
        if wall_group not in self.cltd_wall:
            raise ValueError(f"Invalid wall group: {wall_group}")
        orientation_map = {e.value: e.name for e in Orientation}
        orientation_abbr = orientation_map.get(orientation, orientation)
        if orientation_abbr not in self.cltd_wall[wall_group].columns:
            raise ValueError(f"Invalid orientation: {orientation}")
        if hour not in self.cltd_wall[wall_group].index:
            raise ValueError(f"Invalid hour: {hour}")
        return float(self.cltd_wall[wall_group].loc[hour, orientation_abbr])

    def get_cltd_roof(self, roof_group: str, latitude: str, hour: int) -> float:
        """Get CLTD value for a roof."""
        # Map latitude to standard format before forming the key
        valid_latitudes = ['24N', '36N', '48N']
        
        # Handle numeric or non-standard latitude values
        if latitude not in valid_latitudes:
            # Try to convert to standard format
            try:
                # First, handle string representations that might contain direction indicators
                if isinstance(latitude, str):
                    # Extract numeric part, removing 'N' or 'S'
                    lat_str = latitude.upper().strip()
                    num_part = ''.join(c for c in lat_str if c.isdigit() or c == '.')
                    lat_val = float(num_part)
                    
                    # Adjust for southern hemisphere if needed
                    if 'S' in lat_str:
                        lat_val = -lat_val
                else:
                    # Handle direct numeric input
                    lat_val = float(latitude)
                
                # Take absolute value for mapping purposes
                abs_lat = abs(lat_val)
                
                # Map to the closest standard latitude for roof data
                if abs_lat < 30:
                    latitude = '24N'
                elif abs_lat < 42:
                    latitude = '36N'
                else:
                    latitude = '48N'
                
            except (ValueError, TypeError):
                raise ValueError(f"Invalid latitude format: {latitude}")
        
        key = f"{roof_group}_{latitude}"
        if key not in self.cltd_roof:
            raise ValueError(f"Invalid roof group or latitude: {key}")
        if hour not in self.cltd_roof[key].index:
            raise ValueError(f"Invalid hour: {hour}")
        return float(self.cltd_roof[key].loc[hour, "HOR"])

    def get_scl(self, latitude: str, month: str, orientation: str, hour: int) -> float:
        """Get SCL value for a window."""
        # Map latitude to standard format before forming the key
        valid_latitudes = ['24N', '32N', '40N', '48N', '56N']
        
        # Handle numeric or non-standard latitude values
        if latitude not in valid_latitudes:
            # Try to convert to standard format
            try:
                # First, handle string representations that might contain direction indicators
                if isinstance(latitude, str):
                    # Extract numeric part, removing 'N' or 'S'
                    lat_str = latitude.upper().strip()
                    num_part = ''.join(c for c in lat_str if c.isdigit() or c == '.')
                    lat_val = float(num_part)
                    
                    # Adjust for southern hemisphere if needed
                    if 'S' in lat_str:
                        lat_val = -lat_val
                else:
                    # Handle direct numeric input
                    lat_val = float(latitude)
                
                # Take absolute value for mapping purposes
                abs_lat = abs(lat_val)
                
                # Map to the closest standard latitude for SCL data
                if abs_lat < 28:
                    latitude = '24N'
                elif abs_lat < 36:
                    latitude = '32N'
                elif abs_lat < 44:
                    latitude = '40N'
                elif abs_lat < 52:
                    latitude = '48N'
                else:
                    latitude = '56N'
                
            except (ValueError, TypeError):
                raise ValueError(f"Invalid latitude format: {latitude}")
        
        key = f"{latitude}_{month}"
        if key not in self.scl:
            raise ValueError(f"Invalid latitude or month: {key}")
        orientation_map = {e.value: e.name for e in Orientation}
        orientation_abbr = orientation_map.get(orientation, orientation)
        if orientation_abbr not in self.scl[key].columns:
            raise ValueError(f"Invalid orientation: {orientation}")
        if hour not in self.scl[key].index:
            raise ValueError(f"Invalid hour: {hour}")
        return float(self.scl[key].loc[hour, orientation_abbr])

    def get_clf_lights(self, zone_type: str, hours_on: str, hour: int) -> float:
        """Get CLF value for lights."""
        key = f"{zone_type}_{hours_on}"
        if key not in self.clf_lights.columns:
            raise ValueError(f"Invalid zone type or hours: {key}")
        if hour not in self.clf_lights.index:
            raise ValueError(f"Invalid hour: {hour}")
        return float(self.clf_lights.loc[hour, key])

    def get_clf_people(self, zone_type: str, hours_occupied: str, hour: int) -> float:
        """Get CLF value for people."""
        key = f"{zone_type}_{hours_occupied}"
        if key not in self.clf_people.columns:
            raise ValueError(f"Invalid zone type or hours: {key}")
        if hour not in self.clf_people.index:
            raise ValueError(f"Invalid hour: {hour}")
        return float(self.clf_people.loc[hour, key])

    def get_clf_equipment(self, zone_type: str, hours_operated: str, hour: int) -> float:
        """Get CLF value for equipment."""
        key = f"{zone_type}_{hours_operated}"
        if key not in self.clf_equipment.columns:
            raise ValueError(f"Invalid zone type or hours: {key}")
        if hour not in self.clf_equipment.index:
            raise ValueError(f"Invalid hour: {hour}")
        return float(self.clf_equipment.loc[hour, key])

    def get_thermal_property(self, material: str, property_type: str) -> float:
        """
        Get thermal property for a material.
        
        Args:
            material (str): Material name (e.g., 'Brick_4in').
            property_type (str): Property to retrieve ('U_value', 'R_value', 'density').
        
        Returns:
            float: Value of the specified thermal property.
        
        Raises:
            ValueError: If material or property_type is invalid.
        """
        if material not in self.thermal_properties['material'].values:
            raise ValueError(f"Invalid material: {material}")
        if property_type not in ['U_value', 'R_value', 'density']:
            raise ValueError(f"Invalid property type: {property_type}")
        return float(self.thermal_properties.loc[self.thermal_properties['material'] == material, property_type].iloc[0])

    def get_heat_gain(self, source: str) -> float:
        """
        Get heat gain value for an internal source.
        
        Args:
            source (str): Source type ('people_sensible', 'people_latent', 'lights', 'equipment').
        
        Returns:
            float: Heat gain value (Btu/h or Btu/h-ft²).
        
        Raises:
            ValueError: If source is invalid.
        """
        if source not in self.heat_gain['source'].values:
            raise ValueError(f"Invalid source: {source}")
        return float(self.heat_gain.loc[self.heat_gain['source'] == source, 'gain'].iloc[0])

    def plot_cooling_load(self, cooling_loads: List[float], title: str = "Cooling Load Profile", filename: str = "cooling_load.png") -> None:
        """
        Plot the cooling load profile over 24 hours.
        
        Args:
            cooling_loads (List[float]): List of cooling load values for each hour.
            title (str): Plot title.
            filename (str): Output filename for the plot.
        """
        if len(cooling_loads) != 24:
            raise ValueError("Cooling loads must contain 24 hourly values")
        
        plt.figure(figsize=(10, 6))
        hours = list(range(24))
        plt.plot(hours, cooling_loads, marker='o', linestyle='-', color='b')
        plt.title(title)
        plt.xlabel("Hour of Day")
        plt.ylabel("Cooling Load (Btu/h)")
        plt.grid(True)
        plt.xticks(hours)
        plt.savefig(filename)
        plt.close()

    def calculate_corrected_cltd_wall(self, wall_group: str, orientation: str, hour: int, latitude: str, month: str, color: str, outdoor_temp: float, indoor_temp: float) -> float:
        """
        Calculate corrected CLTD for a wall with climatic corrections.
    
        Args:
            wall_group (str): Wall group (e.g., 'A', 'B', ..., 'H').
            orientation (str): Wall orientation (e.g., 'North', 'East', etc.).
            hour (int): Hour of the day (0-23).
            latitude (str): Latitude (e.g., '32N').
            month (str): Month (e.g., 'Jul').
            color (str): Surface color ('Dark', 'Medium', 'Light').
            outdoor_temp (float): Outdoor design temperature (°C).
            indoor_temp (float): Indoor design temperature (°C).
    
        Returns:
            float: Corrected CLTD value (°C).
    
        Raises:
            ValueError: If inputs are invalid or correction fails.
        """
        valid, message = self._validate_cltd_inputs(wall_group, orientation, hour, latitude, month, color, is_wall=True)
        if not valid:
            raise ValueError(message)
        try:
            # Get base CLTD
            base_cltd = self.get_cltd_wall(wall_group, orientation, hour)
            # Apply climatic corrections
            corrected_cltd = self._apply_climatic_corrections(base_cltd, latitude, month, color, outdoor_temp, indoor_temp)
            return corrected_cltd
        except Exception as e:
            raise ValueError(f"Error calculating corrected CLTD for wall: {str(e)}")

    def calculate_corrected_cltd_roof(self, roof_group: str, latitude: str, hour: int, month: str, color: str, outdoor_temp: float, indoor_temp: float) -> float:
        """
        Calculate corrected CLTD for a roof with climatic corrections.
    
        Args:
            roof_group (str): Roof group (e.g., 'A', 'B', ..., 'G').
            latitude (str): Latitude (e.g., '24N', '36N', '48N').
            hour (int): Hour of the day (0-23).
            month (str): Month (e.g., 'Jul').
            color (str): Surface color ('Dark', 'Medium', 'Light').
            outdoor_temp (float): Outdoor design temperature (°C).
            indoor_temp (float): Indoor design temperature (°C).
    
        Returns:
            float: Corrected CLTD value (°C).
    
        Raises:
            ValueError: If inputs are invalid or correction fails.
        """
        valid, message = self._validate_cltd_inputs(roof_group, 'Horizontal', hour, latitude, month, color, is_wall=False)
        if not valid:
            raise ValueError(message)
        try:
            # Get base CLTD
            base_cltd = self.get_cltd_roof(roof_group, latitude, hour)
            # Apply climatic corrections
            corrected_cltd = self._apply_climatic_corrections(base_cltd, latitude, month, color, outdoor_temp, indoor_temp)
            return corrected_cltd
        except Exception as e:
            raise ValueError(f"Error calculating corrected CLTD for roof: {str(e)}")