Spaces:
Running
Running
File size: 31,774 Bytes
ca54a52 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 |
"""
Results display module for HVAC Load Calculator.
This module provides the UI components for displaying calculation results.
"""
import streamlit as st
import pandas as pd
import numpy as np
from typing import Dict, List, Any, Optional, Tuple
import json
import os
import plotly.graph_objects as go
import plotly.express as px
from datetime import datetime
# Import visualization modules
from utils.component_visualization import ComponentVisualization
from utils.scenario_comparison import ScenarioComparisonVisualization
from utils.psychrometric_visualization import PsychrometricVisualization
from utils.time_based_visualization import TimeBasedVisualization
class ResultsDisplay:
"""Class for results display interface."""
def __init__(self):
"""Initialize results display interface."""
self.component_visualization = ComponentVisualization()
self.scenario_comparison = ScenarioComparisonVisualization()
self.psychrometric_visualization = PsychrometricVisualization()
self.time_based_visualization = TimeBasedVisualization()
def display_results(self, session_state: Dict[str, Any]) -> None:
"""
Display calculation results in Streamlit.
Args:
session_state: Streamlit session state containing calculation results
"""
st.header("Calculation Results")
# Check if calculations have been performed
if "calculation_results" not in session_state or not session_state["calculation_results"]:
st.warning("No calculation results available. Please run calculations first.")
return
# Create tabs for different result views
tab1, tab2, tab3, tab4, tab5 = st.tabs([
"Summary",
"Component Breakdown",
"Psychrometric Analysis",
"Time Analysis",
"Scenario Comparison"
])
with tab1:
self._display_summary_results(session_state)
with tab2:
self._display_component_breakdown(session_state)
with tab3:
self._display_psychrometric_analysis(session_state)
with tab4:
self._display_time_analysis(session_state)
with tab5:
self._display_scenario_comparison(session_state)
def _display_summary_results(self, session_state: Dict[str, Any]) -> None:
"""
Display summary of calculation results.
Args:
session_state: Streamlit session state containing calculation results
"""
st.subheader("Summary Results")
results = session_state["calculation_results"]
# Display project information
if "building_info" in session_state:
st.write(f"**Project:** {session_state['building_info']['project_name']}")
st.write(f"**Building:** {session_state['building_info']['building_name']}")
location = f"{session_state['building_info']['city']}, {session_state['building_info']['country']}"
st.write(f"**Location:** {location}")
st.write(f"**Climate Zone:** {session_state['building_info'].get('climate_zone', 'N/A')}")
st.write(f"**Floor Area:** {session_state['building_info']['floor_area']} m²")
# Create columns for cooling and heating loads
col1, col2 = st.columns(2)
with col1:
st.write("### Cooling Load Results")
# Check if cooling results are available
if not results.get("cooling") or "total_load" not in results["cooling"]:
st.warning("Cooling load results are not available. Please check calculation inputs and try again.")
else:
# Display cooling load metrics
cooling_metrics = [
{"name": "Total Cooling Load", "value": results["cooling"]["total_load"], "unit": "kW"},
{"name": "Sensible Cooling Load", "value": results["cooling"]["sensible_load"], "unit": "kW"},
{"name": "Latent Cooling Load", "value": results["cooling"]["latent_load"], "unit": "kW"},
{"name": "Cooling Load per Area", "value": results["cooling"]["load_per_area"], "unit": "W/m²"}
]
for metric in cooling_metrics:
st.metric(
label=metric["name"],
value=f"{metric['value']:.2f} {metric['unit']}"
)
# Display cooling load pie chart
cooling_breakdown = {
"Walls": results["cooling"]["component_loads"]["walls"],
"Roof": results["cooling"]["component_loads"]["roof"],
"Windows": results["cooling"]["component_loads"]["windows"],
"Doors": results["cooling"]["component_loads"]["doors"],
"People": results["cooling"]["component_loads"]["people"],
"Lighting": results["cooling"]["component_loads"]["lighting"],
"Equipment": results["cooling"]["component_loads"]["equipment"],
"Infiltration": results["cooling"]["component_loads"]["infiltration"],
"Ventilation": results["cooling"]["component_loads"]["ventilation"]
}
fig = px.pie(
values=list(cooling_breakdown.values()),
names=list(cooling_breakdown.keys()),
title="Cooling Load Breakdown",
color_discrete_sequence=px.colors.qualitative.Pastel
)
fig.update_traces(textposition='inside', textinfo='percent+label')
fig.update_layout(uniformtext_minsize=12, uniformtext_mode='hide')
st.plotly_chart(fig, use_container_width=True)
with col2:
st.write("### Heating Load Results")
# Check if heating results are available
if not results.get("heating") or "total_load" not in results["heating"]:
st.warning("Heating load results are not available. Please check calculation inputs and try again.")
else:
# Display heating load metrics
heating_metrics = [
{"name": "Total Heating Load", "value": results["heating"]["total_load"], "unit": "kW"},
{"name": "Heating Load per Area", "value": results["heating"]["load_per_area"], "unit": "W/m²"},
{"name": "Design Heat Loss", "value": results["heating"]["design_heat_loss"], "unit": "kW"},
{"name": "Safety Factor", "value": results["heating"]["safety_factor"], "unit": "%"}
]
for metric in heating_metrics:
st.metric(
label=metric["name"],
value=f"{metric['value']:.2f} {metric['unit']}"
)
# Display heating load pie chart
heating_breakdown = {
"Walls": results["heating"]["component_loads"]["walls"],
"Roof": results["heating"]["component_loads"]["roof"],
"Floor": results["heating"]["component_loads"]["floor"],
"Windows": results["heating"]["component_loads"]["windows"],
"Doors": results["heating"]["component_loads"]["doors"],
"Infiltration": results["heating"]["component_loads"]["infiltration"],
"Ventilation": results["heating"]["component_loads"]["ventilation"]
}
fig = px.pie(
values=list(heating_breakdown.values()),
names=list(heating_breakdown.keys()),
title="Heating Load Breakdown",
color_discrete_sequence=px.colors.qualitative.Pastel
)
fig.update_traces(textposition='inside', textinfo='percent+label')
fig.update_layout(uniformtext_minsize=12, uniformtext_mode='hide')
st.plotly_chart(fig, use_container_width=True)
# Display tabular results
st.subheader("Detailed Results")
# Create tabs for cooling and heating tables
tab1, tab2 = st.tabs(["Cooling Load Details", "Heating Load Details"])
with tab1:
if not results.get("cooling") or "detailed_loads" not in results["cooling"]:
st.warning("Cooling load details are not available.")
else:
# Create cooling load details table
cooling_details = []
# Add envelope components
for wall in results["cooling"]["detailed_loads"]["walls"]:
cooling_details.append({
"Component Type": "Wall",
"Name": wall["name"],
"Orientation": wall["orientation"],
"Area (m²)": wall["area"],
"U-Value (W/m²·K)": wall["u_value"],
"CLTD (°C)": wall["cltd"],
"Load (kW)": wall["load"]
})
for roof in results["cooling"]["detailed_loads"]["roofs"]:
cooling_details.append({
"Component Type": "Roof",
"Name": roof["name"],
"Orientation": roof["orientation"],
"Area (m²)": roof["area"],
"U-Value (W/m²·K)": roof["u_value"],
"CLTD (°C)": roof["cltd"],
"Load (kW)": roof["load"]
})
for window in results["cooling"]["detailed_loads"]["windows"]:
cooling_details.append({
"Component Type": "Window",
"Name": window["name"],
"Orientation": window["orientation"],
"Area (m²)": window["area"],
"U-Value (W/m²·K)": window["u_value"],
"SHGC": window["shgc"],
"SCL (W/m²)": window["scl"],
"Load (kW)": window["load"]
})
for door in results["cooling"]["detailed_loads"]["doors"]:
cooling_details.append({
"Component Type": "Door",
"Name": door["name"],
"Orientation": door["orientation"],
"Area (m²)": door["area"],
"U-Value (W/m²·K)": door["u_value"],
"CLTD (°C)": door["cltd"],
"Load (kW)": door["load"]
})
# Add internal loads
for internal_load in results["cooling"]["detailed_loads"]["internal"]:
cooling_details.append({
"Component Type": internal_load["type"],
"Name": internal_load["name"],
"Quantity": internal_load["quantity"],
"Heat Gain (W)": internal_load["heat_gain"],
"CLF": internal_load["clf"],
"Load (kW)": internal_load["load"]
})
# Add infiltration and ventilation
cooling_details.append({
"Component Type": "Infiltration",
"Name": "Air Infiltration",
"Air Flow (m³/s)": results["cooling"]["detailed_loads"]["infiltration"]["air_flow"],
"Sensible Load (kW)": results["cooling"]["detailed_loads"]["infiltration"]["sensible_load"],
"Latent Load (kW)": results["cooling"]["detailed_loads"]["infiltration"]["latent_load"],
"Load (kW)": results["cooling"]["detailed_loads"]["infiltration"]["total_load"]
})
cooling_details.append({
"Component Type": "Ventilation",
"Name": "Fresh Air",
"Air Flow (m³/s)": results["cooling"]["detailed_loads"]["ventilation"]["air_flow"],
"Sensible Load (kW)": results["cooling"]["detailed_loads"]["ventilation"]["sensible_load"],
"Latent Load (kW)": results["cooling"]["detailed_loads"]["ventilation"]["latent_load"],
"Load (kW)": results["cooling"]["detailed_loads"]["ventilation"]["total_load"]
})
# Display cooling details table
cooling_df = pd.DataFrame(cooling_details)
st.dataframe(cooling_df, use_container_width=True)
with tab2:
if not results.get("heating") or "detailed_loads" not in results["heating"]:
st.warning("Heating load details are not available.")
else:
# Create heating load details table
heating_details = []
# Add envelope components
for wall in results["heating"]["detailed_loads"]["walls"]:
heating_details.append({
"Component Type": "Wall",
"Name": wall["name"],
"Orientation": wall["orientation"],
"Area (m²)": wall["area"],
"U-Value (W/m²·K)": wall["u_value"],
"Temperature Difference (°C)": wall["delta_t"],
"Load (kW)": wall["load"]
})
for roof in results["heating"]["detailed_loads"]["roofs"]:
heating_details.append({
"Component Type": "Roof",
"Name": roof["name"],
"Orientation": roof["orientation"],
"Area (m²)": roof["area"],
"U-Value (W/m²·K)": wall["u_value"],
"Temperature Difference (°C)": roof["delta_t"],
"Load (kW)": roof["load"]
})
for floor in results["heating"]["detailed_loads"]["floors"]:
heating_details.append({
"Component Type": "Floor",
"Name": floor["name"],
"Area (m²)": floor["area"],
"U-Value (W/m²·K)": floor["u_value"],
"Temperature Difference (°C)": floor["delta_t"],
"Load (kW)": floor["load"]
})
for window in results["heating"]["detailed_loads"]["windows"]:
heating_details.append({
"Component Type": "Window",
"Name": window["name"],
"Orientation": window["orientation"],
"Area (m²)": window["area"],
"U-Value (W/m²·K)": window["u_value"],
"Temperature Difference (°C)": window["delta_t"],
"Load (kW)": window["load"]
})
for door in results["heating"]["detailed_loads"]["doors"]:
heating_details.append({
"Component Type": "Door",
"Name": door["name"],
"Orientation": door["orientation"],
"Area (m²)": door["area"],
"U-Value (W/m²·K)": door["u_value"],
"Temperature Difference (°C)": door["delta_t"],
"Load (kW)": door["load"]
})
# Add infiltration and ventilation
heating_details.append({
"Component Type": "Infiltration",
"Name": "Air Infiltration",
"Air Flow (m³/s)": results["heating"]["detailed_loads"]["infiltration"]["air_flow"],
"Temperature Difference (°C)": results["heating"]["detailed_loads"]["infiltration"]["delta_t"],
"Load (kW)": results["heating"]["detailed_loads"]["infiltration"]["load"]
})
heating_details.append({
"Component Type": "Ventilation",
"Name": "Fresh Air",
"Air Flow (m³/s)": results["heating"]["detailed_loads"]["ventilation"]["air_flow"],
"Temperature Difference (°C)": results["heating"]["detailed_loads"]["ventilation"]["delta_t"],
"Load (kW)": results["heating"]["detailed_loads"]["ventilation"]["load"]
})
# Display heating details table
heating_df = pd.DataFrame(heating_details)
st.dataframe(heating_df, use_container_width=True)
# Add download buttons for results
st.subheader("Download Results")
col1, col2 = st.columns(2)
with col1:
if results.get("cooling") and "detailed_loads" in results["cooling"]:
if st.button("Download Cooling Load Results (CSV)"):
cooling_csv = cooling_df.to_csv(index=False)
st.download_button(
label="Download CSV",
data=cooling_csv,
file_name=f"cooling_load_results_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv",
mime="text/csv"
)
with col2:
if results.get("heating") and "detailed_loads" in results["heating"]:
if st.button("Download Heating Load Results (CSV)"):
heating_csv = heating_df.to_csv(index=False)
st.download_button(
label="Download CSV",
data=heating_csv,
file_name=f"heating_load_results_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv",
mime="text/csv"
)
# Add button to download full report
if st.button("Generate Full Report (Excel)"):
st.info("Excel report generation will be implemented in the Export module.")
def _display_component_breakdown(self, session_state: Dict[str, Any]) -> None:
"""
Display component breakdown visualization.
Args:
session_state: Streamlit session state containing calculation results
"""
st.subheader("Component Breakdown")
if not session_state["calculation_results"].get("cooling") and not session_state["calculation_results"].get("heating"):
st.warning("No component breakdown data available.")
return
# Try to use component visualization module
try:
self.component_visualization.display_component_breakdown(
session_state["calculation_results"],
session_state["components"]
)
except AttributeError:
# Fallback visualization if display_component_breakdown is not available
st.info("Component visualization module not fully implemented. Displaying default breakdown.")
results = session_state["calculation_results"]
# Cooling load bar chart
if results.get("cooling"):
cooling_breakdown = {
"Walls": results["cooling"]["component_loads"]["walls"],
"Roof": results["cooling"]["component_loads"]["roof"],
"Windows": results["cooling"]["component_loads"]["windows"],
"Doors": results["cooling"]["component_loads"]["doors"],
"People": results["cooling"]["component_loads"]["people"],
"Lighting": results["cooling"]["component_loads"]["lighting"],
"Equipment": results["cooling"]["component_loads"]["equipment"],
"Infiltration": results["cooling"]["component_loads"]["infiltration"],
"Ventilation": results["cooling"]["component_loads"]["ventilation"]
}
fig_cooling = px.bar(
x=list(cooling_breakdown.keys()),
y=list(cooling_breakdown.values()),
title="Cooling Load by Component",
labels={"x": "Component", "y": "Load (kW)"},
color_discrete_sequence=px.colors.qualitative.Pastel
)
fig_cooling.update_layout(showlegend=False)
st.plotly_chart(fig_cooling, use_container_width=True)
# Heating load bar chart
if results.get("heating"):
heating_breakdown = {
"Walls": results["heating"]["component_loads"]["walls"],
"Roof": results["heating"]["component_loads"]["roof"],
"Floor": results["heating"]["component_loads"]["floor"],
"Windows": results["heating"]["component_loads"]["windows"],
"Doors": results["heating"]["component_loads"]["doors"],
"Infiltration": results["heating"]["component_loads"]["infiltration"],
"Ventilation": results["heating"]["component_loads"]["ventilation"]
}
fig_heating = px.bar(
x=list(heating_breakdown.keys()),
y=list(heating_breakdown.values()),
title="Heating Load by Component",
labels={"x": "Component", "y": "Load (kW)"},
color_discrete_sequence=px.colors.qualitative.Pastel
)
fig_heating.update_layout(showlegend=False)
st.plotly_chart(fig_heating, use_container_width=True)
def _display_psychrometric_analysis(self, session_state: Dict[str, Any]) -> None:
"""
Display psychrometric analysis visualization.
Args:
session_state: Streamlit session state containing calculation results
"""
st.subheader("Psychrometric Analysis")
if not session_state["calculation_results"].get("cooling"):
st.warning("Psychrometric analysis requires cooling load results.")
return
# Use psychrometric visualization module
self.psychrometric_visualization.display_psychrometric_chart(
session_state["calculation_results"],
session_state["building_info"]
)
def _display_time_analysis(self, session_state: Dict[str, Any]) -> None:
"""
Display time-based analysis visualization.
Args:
session_state: Streamlit session state containing calculation results
"""
st.subheader("Time Analysis")
if not session_state["calculation_results"].get("cooling"):
st.warning("Time analysis requires cooling load results.")
return
# Use time-based visualization module
self.time_based_visualization.display_time_analysis(
session_state["calculation_results"]
)
def _display_scenario_comparison(self, session_state: Dict[str, Any]) -> None:
"""
Display scenario comparison visualization.
Args:
session_state: Streamlit session state containing calculation results
"""
st.subheader("Scenario Comparison")
# Check if there are saved scenarios
if "saved_scenarios" not in session_state or not session_state["saved_scenarios"]:
st.info("No saved scenarios available for comparison. Save the current results as a scenario to enable comparison.")
# Add button to save current results as a scenario
scenario_name = st.text_input("Scenario Name", value="Baseline")
if st.button("Save Current Results as Scenario"):
if "saved_scenarios" not in session_state:
session_state["saved_scenarios"] = {}
# Save current results as a scenario
session_state["saved_scenarios"][scenario_name] = {
"results": session_state["calculation_results"],
"building_info": session_state["building_info"],
"components": session_state["components"],
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
}
st.success(f"Scenario '{scenario_name}' saved successfully!")
st.rerun()
else:
# Use scenario comparison module
self.scenario_comparison.display_scenario_comparison(
session_state["calculation_results"],
session_state["saved_scenarios"]
)
# Add button to save current results as a new scenario
st.write("### Save Current Results as New Scenario")
scenario_name = st.text_input("Scenario Name", value="Scenario " + str(len(session_state["saved_scenarios"]) + 1))
if st.button("Save Current Results as Scenario"):
# Save current results as a scenario
session_state["saved_scenarios"][scenario_name] = {
"results": session_state["calculation_results"],
"building_info": session_state["building_info"],
"components": session_state["components"],
"timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
}
st.success(f"Scenario '{scenario_name}' saved successfully!")
st.rerun()
# Add button to delete a scenario
st.write("### Delete Scenario")
scenario_to_delete = st.selectbox(
"Select Scenario to Delete",
options=list(session_state["saved_scenarios"].keys())
)
if st.button("Delete Selected Scenario"):
# Delete selected scenario
del session_state["saved_scenarios"][scenario_to_delete]
st.success(f"Scenario '{scenario_to_delete}' deleted successfully!")
st.rerun()
# Create a singleton instance
results_display = ResultsDisplay()
# Example usage
if __name__ == "__main__":
import streamlit as st
# Initialize session state with dummy data for testing
if "calculation_results" not in st.session_state:
st.session_state["calculation_results"] = {
"cooling": {
"total_load": 25.5,
"sensible_load": 20.0,
"latent_load": 5.5,
"load_per_area": 85.0,
"component_loads": {
"walls": 5.0,
"roof": 3.0,
"windows": 8.0,
"doors": 1.0,
"people": 2.5,
"lighting": 2.0,
"equipment": 1.5,
"infiltration": 1.0,
"ventilation": 1.5
},
"detailed_loads": {
"walls": [
{"name": "North Wall", "orientation": "NORTH", "area": 20.0, "u_value": 0.5, "cltd": 10.0, "load": 1.0}
],
"roofs": [
{"name": "Main Roof", "orientation": "HORIZONTAL", "area": 100.0, "u_value": 0.3, "cltd": 15.0, "load": 3.0}
],
"windows": [
{"name": "South Window", "orientation": "SOUTH", "area": 10.0, "u_value": 2.8, "shgc": 0.7, "scl": 800.0, "load": 8.0}
],
"doors": [
{"name": "Main Door", "orientation": "NORTH", "area": 2.0, "u_value": 2.0, "cltd": 10.0, "load": 1.0}
],
"internal": [
{"type": "People", "name": "Occupants", "quantity": 10, "heat_gain": 250, "clf": 1.0, "load": 2.5},
{"type": "Lighting", "name": "General Lighting", "quantity": 1000, "heat_gain": 2000, "clf": 1.0, "load": 2.0},
{"type": "Equipment", "name": "Office Equipment", "quantity": 5, "heat_gain": 300, "clf": 1.0, "load": 1.5}
],
"infiltration": {
"air_flow": 0.05,
"sensible_load": 0.8,
"latent_load": 0.2,
"total_load": 1.0
},
"ventilation": {
"air_flow": 0.1,
"sensible_load": 1.0,
"latent_load": 0.5,
"total_load": 1.5
}
}
},
"heating": {
"total_load": 30.0,
"load_per_area": 100.0,
"design_heat_loss": 27.0,
"safety_factor": 10.0,
"component_loads": {
"walls": 8.0,
"roof": 5.0,
"floor": 4.0,
"windows": 7.0,
"doors": 1.0,
"infiltration": 2.0,
"ventilation": 3.0
},
"detailed_loads": {
"walls": [
{"name": "North Wall", "orientation": "NORTH", "area": 20.0, "u_value": 0.5, "delta_t": 25.0, "load": 8.0}
],
"roofs": [
{"name": "Main Roof", "orientation": "HORIZONTAL", "area": 100.0, "u_value": 0.3, "delta_t": 25.0, "load": 5.0}
],
"floors": [
{"name": "Ground Floor", "area": 100.0, "u_value": 0.4, "delta_t": 10.0, "load": 4.0}
],
"windows": [
{"name": "South Window", "orientation": "SOUTH", "area": 10.0, "u_value": 2.8, "delta_t": 25.0, "load": 7.0}
],
"doors": [
{"name": "Main Door", "orientation": "NORTH", "area": 2.0, "u_value": 2.0, "delta_t": 25.0, "load": 1.0}
],
"infiltration": {
"air_flow": 0.05,
"delta_t": 25.0,
"load": 2.0
},
"ventilation": {
"air_flow": 0.1,
"delta_t": 25.0,
"load": 3.0
}
}
}
}
# Display results
results_display.display_results(st.session_state) |