File size: 35,850 Bytes
ca54a52
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
"""
Data export module for HVAC Load Calculator.
This module provides functionality for exporting calculation results.
"""

import streamlit as st
import pandas as pd
import numpy as np
from typing import Dict, List, Any, Optional, Tuple
import json
import os
import base64
import io
from datetime import datetime
import xlsxwriter


class DataExport:
    """Class for data export functionality."""
    
    @staticmethod
    def export_to_csv(data: Dict[str, Any], file_path: str = None) -> Optional[str]:
        """
        Export data to CSV format.
        
        Args:
            data: Dictionary with data to export
            file_path: Optional path to save the CSV file
            
        Returns:
            CSV string if file_path is None, otherwise None
        """
        try:
            # Create DataFrame from data
            df = pd.DataFrame(data)
            
            # Convert to CSV
            csv_data = df.to_csv(index=False)
            
            # Save to file if path provided
            if file_path:
                df.to_csv(file_path, index=False)
                return None
            
            # Return CSV string if no path provided
            return csv_data
        
        except Exception as e:
            st.error(f"Error exporting to CSV: {e}")
            return None
    
    @staticmethod
    def export_to_excel(data_dict: Dict[str, pd.DataFrame], file_path: str = None) -> Optional[bytes]:
        """
        Export data to Excel format.
        
        Args:
            data_dict: Dictionary with sheet names and DataFrames
            file_path: Optional path to save the Excel file
            
        Returns:
            Excel bytes if file_path is None, otherwise None
        """
        try:
            # Create Excel file in memory or on disk
            if file_path:
                writer = pd.ExcelWriter(file_path, engine='xlsxwriter')
            else:
                output = io.BytesIO()
                writer = pd.ExcelWriter(output, engine='xlsxwriter')
            
            # Write each DataFrame to a different sheet
            for sheet_name, df in data_dict.items():
                df.to_excel(writer, sheet_name=sheet_name, index=False)
                
                # Auto-adjust column widths
                worksheet = writer.sheets[sheet_name]
                for i, col in enumerate(df.columns):
                    max_width = max(
                        df[col].astype(str).map(len).max(),
                        len(col)
                    ) + 2
                    worksheet.set_column(i, i, max_width)
            
            # Save the Excel file
            writer.close()
            
            # Return Excel bytes if no path provided
            if not file_path:
                output.seek(0)
                return output.getvalue()
            
            return None
        
        except Exception as e:
            st.error(f"Error exporting to Excel: {e}")
            return None
    
    @staticmethod
    def export_scenario_to_json(scenario: Dict[str, Any], file_path: str = None) -> Optional[str]:
        """
        Export scenario data to JSON format.
        
        Args:
            scenario: Dictionary with scenario data
            file_path: Optional path to save the JSON file
            
        Returns:
            JSON string if file_path is None, otherwise None
        """
        try:
            # Convert to JSON
            json_data = json.dumps(scenario, indent=4)
            
            # Save to file if path provided
            if file_path:
                with open(file_path, "w") as f:
                    f.write(json_data)
                return None
            
            # Return JSON string if no path provided
            return json_data
        
        except Exception as e:
            st.error(f"Error exporting scenario to JSON: {e}")
            return None
    
    @staticmethod
    def get_download_link(data: Any, filename: str, text: str, mime_type: str = "text/csv") -> str:
        """
        Generate a download link for data.
        
        Args:
            data: Data to download
            filename: Name of the file to download
            text: Text to display for the download link
            mime_type: MIME type of the file
            
        Returns:
            HTML string with download link
        """
        if isinstance(data, str):
            b64 = base64.b64encode(data.encode()).decode()
        else:
            b64 = base64.b64encode(data).decode()
        
        href = f'<a href="data:{mime_type};base64,{b64}" download="{filename}">{text}</a>'
        return href
    
    @staticmethod
    def create_cooling_load_dataframes(results: Dict[str, Any]) -> Dict[str, pd.DataFrame]:
        """
        Create DataFrames for cooling load results.
        
        Args:
            results: Dictionary with calculation results
            
        Returns:
            Dictionary with DataFrames for Excel export
        """
        dataframes = {}
        
        # Create summary DataFrame
        summary_data = {
            "Metric": [
                "Total Cooling Load",
                "Sensible Cooling Load",
                "Latent Cooling Load",
                "Cooling Load per Area"
            ],
            "Value": [
                results["cooling"]["total_load"],
                results["cooling"]["sensible_load"],
                results["cooling"]["latent_load"],
                results["cooling"]["load_per_area"]
            ],
            "Unit": [
                "kW",
                "kW",
                "kW",
                "W/m²"
            ]
        }
        
        dataframes["Cooling Summary"] = pd.DataFrame(summary_data)
        
        # Create component breakdown DataFrame
        component_data = {
            "Component": [
                "Walls",
                "Roof",
                "Windows",
                "Doors",
                "People",
                "Lighting",
                "Equipment",
                "Infiltration",
                "Ventilation"
            ],
            "Load (kW)": [
                results["cooling"]["component_loads"]["walls"],
                results["cooling"]["component_loads"]["roof"],
                results["cooling"]["component_loads"]["windows"],
                results["cooling"]["component_loads"]["doors"],
                results["cooling"]["component_loads"]["people"],
                results["cooling"]["component_loads"]["lighting"],
                results["cooling"]["component_loads"]["equipment"],
                results["cooling"]["component_loads"]["infiltration"],
                results["cooling"]["component_loads"]["ventilation"]
            ],
            "Percentage (%)": [
                results["cooling"]["component_loads"]["walls"] / results["cooling"]["total_load"] * 100,
                results["cooling"]["component_loads"]["roof"] / results["cooling"]["total_load"] * 100,
                results["cooling"]["component_loads"]["windows"] / results["cooling"]["total_load"] * 100,
                results["cooling"]["component_loads"]["doors"] / results["cooling"]["total_load"] * 100,
                results["cooling"]["component_loads"]["people"] / results["cooling"]["total_load"] * 100,
                results["cooling"]["component_loads"]["lighting"] / results["cooling"]["total_load"] * 100,
                results["cooling"]["component_loads"]["equipment"] / results["cooling"]["total_load"] * 100,
                results["cooling"]["component_loads"]["infiltration"] / results["cooling"]["total_load"] * 100,
                results["cooling"]["component_loads"]["ventilation"] / results["cooling"]["total_load"] * 100
            ]
        }
        
        dataframes["Cooling Components"] = pd.DataFrame(component_data)
        
        # Create detailed loads DataFrames
        
        # Walls
        wall_data = []
        for wall in results["cooling"]["detailed_loads"]["walls"]:
            wall_data.append({
                "Name": wall["name"],
                "Orientation": wall["orientation"],
                "Area (m²)": wall["area"],
                "U-Value (W/m²·K)": wall["u_value"],
                "CLTD (°C)": wall["cltd"],
                "Load (kW)": wall["load"]
            })
        
        if wall_data:
            dataframes["Cooling Walls"] = pd.DataFrame(wall_data)
        
        # Roofs
        roof_data = []
        for roof in results["cooling"]["detailed_loads"]["roofs"]:
            roof_data.append({
                "Name": roof["name"],
                "Orientation": roof["orientation"],
                "Area (m²)": roof["area"],
                "U-Value (W/m²·K)": roof["u_value"],
                "CLTD (°C)": roof["cltd"],
                "Load (kW)": roof["load"]
            })
        
        if roof_data:
            dataframes["Cooling Roofs"] = pd.DataFrame(roof_data)
        
        # Windows
        window_data = []
        for window in results["cooling"]["detailed_loads"]["windows"]:
            window_data.append({
                "Name": window["name"],
                "Orientation": window["orientation"],
                "Area (m²)": window["area"],
                "U-Value (W/m²·K)": window["u_value"],
                "SHGC": window["shgc"],
                "SCL (W/m²)": window["scl"],
                "Load (kW)": window["load"]
            })
        
        if window_data:
            dataframes["Cooling Windows"] = pd.DataFrame(window_data)
        
        # Doors
        door_data = []
        for door in results["cooling"]["detailed_loads"]["doors"]:
            door_data.append({
                "Name": door["name"],
                "Orientation": door["orientation"],
                "Area (m²)": door["area"],
                "U-Value (W/m²·K)": door["u_value"],
                "CLTD (°C)": door["cltd"],
                "Load (kW)": door["load"]
            })
        
        if door_data:
            dataframes["Cooling Doors"] = pd.DataFrame(door_data)
        
        # Internal loads
        internal_data = []
        for internal_load in results["cooling"]["detailed_loads"]["internal"]:
            internal_data.append({
                "Type": internal_load["type"],
                "Name": internal_load["name"],
                "Quantity": internal_load["quantity"],
                "Heat Gain (W)": internal_load["heat_gain"],
                "CLF": internal_load["clf"],
                "Load (kW)": internal_load["load"]
            })
        
        if internal_data:
            dataframes["Cooling Internal Loads"] = pd.DataFrame(internal_data)
        
        # Infiltration and ventilation
        air_data = [
            {
                "Type": "Infiltration",
                "Air Flow (m³/s)": results["cooling"]["detailed_loads"]["infiltration"]["air_flow"],
                "Sensible Load (kW)": results["cooling"]["detailed_loads"]["infiltration"]["sensible_load"],
                "Latent Load (kW)": results["cooling"]["detailed_loads"]["infiltration"]["latent_load"],
                "Total Load (kW)": results["cooling"]["detailed_loads"]["infiltration"]["total_load"]
            },
            {
                "Type": "Ventilation",
                "Air Flow (m³/s)": results["cooling"]["detailed_loads"]["ventilation"]["air_flow"],
                "Sensible Load (kW)": results["cooling"]["detailed_loads"]["ventilation"]["sensible_load"],
                "Latent Load (kW)": results["cooling"]["detailed_loads"]["ventilation"]["latent_load"],
                "Total Load (kW)": results["cooling"]["detailed_loads"]["ventilation"]["total_load"]
            }
        ]
        
        dataframes["Cooling Air Exchange"] = pd.DataFrame(air_data)
        
        return dataframes
    
    @staticmethod
    def create_heating_load_dataframes(results: Dict[str, Any]) -> Dict[str, pd.DataFrame]:
        """
        Create DataFrames for heating load results.
        
        Args:
            results: Dictionary with calculation results
            
        Returns:
            Dictionary with DataFrames for Excel export
        """
        dataframes = {}
        
        # Create summary DataFrame
        summary_data = {
            "Metric": [
                "Total Heating Load",
                "Heating Load per Area",
                "Design Heat Loss",
                "Safety Factor"
            ],
            "Value": [
                results["heating"]["total_load"],
                results["heating"]["load_per_area"],
                results["heating"]["design_heat_loss"],
                results["heating"]["safety_factor"]
            ],
            "Unit": [
                "kW",
                "W/m²",
                "kW",
                "%"
            ]
        }
        
        dataframes["Heating Summary"] = pd.DataFrame(summary_data)
        
        # Create component breakdown DataFrame
        component_data = {
            "Component": [
                "Walls",
                "Roof",
                "Floor",
                "Windows",
                "Doors",
                "Infiltration",
                "Ventilation"
            ],
            "Load (kW)": [
                results["heating"]["component_loads"]["walls"],
                results["heating"]["component_loads"]["roof"],
                results["heating"]["component_loads"]["floor"],
                results["heating"]["component_loads"]["windows"],
                results["heating"]["component_loads"]["doors"],
                results["heating"]["component_loads"]["infiltration"],
                results["heating"]["component_loads"]["ventilation"]
            ],
            "Percentage (%)": [
                results["heating"]["component_loads"]["walls"] / results["heating"]["total_load"] * 100,
                results["heating"]["component_loads"]["roof"] / results["heating"]["total_load"] * 100,
                results["heating"]["component_loads"]["floor"] / results["heating"]["total_load"] * 100,
                results["heating"]["component_loads"]["windows"] / results["heating"]["total_load"] * 100,
                results["heating"]["component_loads"]["doors"] / results["heating"]["total_load"] * 100,
                results["heating"]["component_loads"]["infiltration"] / results["heating"]["total_load"] * 100,
                results["heating"]["component_loads"]["ventilation"] / results["heating"]["total_load"] * 100
            ]
        }
        
        dataframes["Heating Components"] = pd.DataFrame(component_data)
        
        # Create detailed loads DataFrames
        
        # Walls
        wall_data = []
        for wall in results["heating"]["detailed_loads"]["walls"]:
            wall_data.append({
                "Name": wall["name"],
                "Orientation": wall["orientation"],
                "Area (m²)": wall["area"],
                "U-Value (W/m²·K)": wall["u_value"],
                "Temperature Difference (°C)": wall["delta_t"],
                "Load (kW)": wall["load"]
            })
        
        if wall_data:
            dataframes["Heating Walls"] = pd.DataFrame(wall_data)
        
        # Roofs
        roof_data = []
        for roof in results["heating"]["detailed_loads"]["roofs"]:
            roof_data.append({
                "Name": roof["name"],
                "Orientation": roof["orientation"],
                "Area (m²)": roof["area"],
                "U-Value (W/m²·K)": roof["u_value"],
                "Temperature Difference (°C)": roof["delta_t"],
                "Load (kW)": roof["load"]
            })
        
        if roof_data:
            dataframes["Heating Roofs"] = pd.DataFrame(roof_data)
        
        # Floors
        floor_data = []
        for floor in results["heating"]["detailed_loads"]["floors"]:
            floor_data.append({
                "Name": floor["name"],
                "Area (m²)": floor["area"],
                "U-Value (W/m²·K)": floor["u_value"],
                "Temperature Difference (°C)": floor["delta_t"],
                "Load (kW)": floor["load"]
            })
        
        if floor_data:
            dataframes["Heating Floors"] = pd.DataFrame(floor_data)
        
        # Windows
        window_data = []
        for window in results["heating"]["detailed_loads"]["windows"]:
            window_data.append({
                "Name": window["name"],
                "Orientation": window["orientation"],
                "Area (m²)": window["area"],
                "U-Value (W/m²·K)": window["u_value"],
                "Temperature Difference (°C)": window["delta_t"],
                "Load (kW)": window["load"]
            })
        
        if window_data:
            dataframes["Heating Windows"] = pd.DataFrame(window_data)
        
        # Doors
        door_data = []
        for door in results["heating"]["detailed_loads"]["doors"]:
            door_data.append({
                "Name": door["name"],
                "Orientation": door["orientation"],
                "Area (m²)": door["area"],
                "U-Value (W/m²·K)": door["u_value"],
                "Temperature Difference (°C)": door["delta_t"],
                "Load (kW)": door["load"]
            })
        
        if door_data:
            dataframes["Heating Doors"] = pd.DataFrame(door_data)
        
        # Infiltration and ventilation
        air_data = [
            {
                "Type": "Infiltration",
                "Air Flow (m³/s)": results["heating"]["detailed_loads"]["infiltration"]["air_flow"],
                "Temperature Difference (°C)": results["heating"]["detailed_loads"]["infiltration"]["delta_t"],
                "Load (kW)": results["heating"]["detailed_loads"]["infiltration"]["load"]
            },
            {
                "Type": "Ventilation",
                "Air Flow (m³/s)": results["heating"]["detailed_loads"]["ventilation"]["air_flow"],
                "Temperature Difference (°C)": results["heating"]["detailed_loads"]["ventilation"]["delta_t"],
                "Load (kW)": results["heating"]["detailed_loads"]["ventilation"]["load"]
            }
        ]
        
        dataframes["Heating Air Exchange"] = pd.DataFrame(air_data)
        
        return dataframes
    
    @staticmethod
    def display_export_interface(session_state: Dict[str, Any]) -> None:
        """
        Display export interface in Streamlit.
        
        Args:
            session_state: Streamlit session state containing calculation results
        """
        st.header("Export Results")
        
        # Check if calculations have been performed
        if "calculation_results" not in session_state or not session_state["calculation_results"]:
            st.warning("No calculation results available. Please run calculations first.")
            return
        
        # Create tabs for different export options
        tab1, tab2, tab3 = st.tabs(["CSV Export", "Excel Export", "Scenario Export"])
        
        with tab1:
            DataExport._display_csv_export(session_state)
        
        with tab2:
            DataExport._display_excel_export(session_state)
        
        with tab3:
            DataExport._display_scenario_export(session_state)
    
    @staticmethod
    def _display_csv_export(session_state: Dict[str, Any]) -> None:
        """
        Display CSV export interface.
        
        Args:
            session_state: Streamlit session state containing calculation results
        """
        st.subheader("CSV Export")
        
        # Get results
        results = session_state["calculation_results"]
        
        # Create tabs for cooling and heating loads
        tab1, tab2 = st.tabs(["Cooling Load CSV", "Heating Load CSV"])
        
        with tab1:
            # Create cooling load DataFrames
            cooling_dfs = DataExport.create_cooling_load_dataframes(results)
            
            # Display and export each DataFrame
            for sheet_name, df in cooling_dfs.items():
                st.write(f"### {sheet_name}")
                st.dataframe(df)
                
                # Add download button
                csv_data = DataExport.export_to_csv(df)
                if csv_data:
                    filename = f"{sheet_name.replace(' ', '_').lower()}_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv"
                    download_link = DataExport.get_download_link(csv_data, filename, f"Download {sheet_name} CSV")
                    st.markdown(download_link, unsafe_allow_html=True)
        
        with tab2:
            # Create heating load DataFrames
            heating_dfs = DataExport.create_heating_load_dataframes(results)
            
            # Display and export each DataFrame
            for sheet_name, df in heating_dfs.items():
                st.write(f"### {sheet_name}")
                st.dataframe(df)
                
                # Add download button
                csv_data = DataExport.export_to_csv(df)
                if csv_data:
                    filename = f"{sheet_name.replace(' ', '_').lower()}_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv"
                    download_link = DataExport.get_download_link(csv_data, filename, f"Download {sheet_name} CSV")
                    st.markdown(download_link, unsafe_allow_html=True)
    
    @staticmethod
    def _display_excel_export(session_state: Dict[str, Any]) -> None:
        """
        Display Excel export interface.
        
        Args:
            session_state: Streamlit session state containing calculation results
        """
        st.subheader("Excel Export")
        
        # Get results
        results = session_state["calculation_results"]
        
        # Create tabs for cooling, heating, and combined loads
        tab1, tab2, tab3 = st.tabs(["Cooling Load Excel", "Heating Load Excel", "Combined Excel"])
        
        with tab1:
            # Create cooling load DataFrames
            cooling_dfs = DataExport.create_cooling_load_dataframes(results)
            
            # Add download button
            excel_data = DataExport.export_to_excel(cooling_dfs)
            if excel_data:
                filename = f"cooling_load_results_{datetime.now().strftime('%Y%m%d_%H%M%S')}.xlsx"
                download_link = DataExport.get_download_link(
                    excel_data,
                    filename,
                    "Download Cooling Load Excel",
                    "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
                )
                st.markdown(download_link, unsafe_allow_html=True)
            
            # Display preview
            st.write("### Excel Preview")
            st.write("The Excel file will contain the following sheets:")
            for sheet_name in cooling_dfs.keys():
                st.write(f"- {sheet_name}")
        
        with tab2:
            # Create heating load DataFrames
            heating_dfs = DataExport.create_heating_load_dataframes(results)
            
            # Add download button
            excel_data = DataExport.export_to_excel(heating_dfs)
            if excel_data:
                filename = f"heating_load_results_{datetime.now().strftime('%Y%m%d_%H%M%S')}.xlsx"
                download_link = DataExport.get_download_link(
                    excel_data,
                    filename,
                    "Download Heating Load Excel",
                    "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
                )
                st.markdown(download_link, unsafe_allow_html=True)
            
            # Display preview
            st.write("### Excel Preview")
            st.write("The Excel file will contain the following sheets:")
            for sheet_name in heating_dfs.keys():
                st.write(f"- {sheet_name}")
        
        with tab3:
            # Create combined DataFrames
            combined_dfs = {}
            
            # Add project information
            if "building_info" in session_state:
                project_info = [
                    {"Parameter": "Project Name", "Value": session_state["building_info"].get("project_name", "")},
                    {"Parameter": "Building Name", "Value": session_state["building_info"].get("building_name", "")},
                    {"Parameter": "Location", "Value": session_state["building_info"].get("location", "")},
                    {"Parameter": "Climate Zone", "Value": session_state["building_info"].get("climate_zone", "")},
                    {"Parameter": "Building Type", "Value": session_state["building_info"].get("building_type", "")},
                    {"Parameter": "Floor Area", "Value": session_state["building_info"].get("floor_area", "")},
                    {"Parameter": "Number of Floors", "Value": session_state["building_info"].get("num_floors", "")},
                    {"Parameter": "Floor Height", "Value": session_state["building_info"].get("floor_height", "")},
                    {"Parameter": "Orientation", "Value": session_state["building_info"].get("orientation", "")},
                    {"Parameter": "Occupancy", "Value": session_state["building_info"].get("occupancy", "")},
                    {"Parameter": "Operating Hours", "Value": session_state["building_info"].get("operating_hours", "")},
                    {"Parameter": "Date", "Value": datetime.now().strftime("%Y-%m-%d")},
                    {"Parameter": "Time", "Value": datetime.now().strftime("%H:%M:%S")}
                ]
                
                combined_dfs["Project Information"] = pd.DataFrame(project_info)
            
            # Add cooling load DataFrames
            cooling_dfs = DataExport.create_cooling_load_dataframes(results)
            for sheet_name, df in cooling_dfs.items():
                combined_dfs[sheet_name] = df
            
            # Add heating load DataFrames
            heating_dfs = DataExport.create_heating_load_dataframes(results)
            for sheet_name, df in heating_dfs.items():
                combined_dfs[sheet_name] = df
            
            # Add download button
            excel_data = DataExport.export_to_excel(combined_dfs)
            if excel_data:
                filename = f"hvac_load_results_{datetime.now().strftime('%Y%m%d_%H%M%S')}.xlsx"
                download_link = DataExport.get_download_link(
                    excel_data,
                    filename,
                    "Download Combined Excel Report",
                    "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet"
                )
                st.markdown(download_link, unsafe_allow_html=True)
            
            # Display preview
            st.write("### Excel Preview")
            st.write("The Excel file will contain the following sheets:")
            for sheet_name in combined_dfs.keys():
                st.write(f"- {sheet_name}")
    
    @staticmethod
    def _display_scenario_export(session_state: Dict[str, Any]) -> None:
        """
        Display scenario export interface.
        
        Args:
            session_state: Streamlit session state containing calculation results
        """
        st.subheader("Scenario Export")
        
        # Check if there are saved scenarios
        if "saved_scenarios" not in session_state or not session_state["saved_scenarios"]:
            st.info("No saved scenarios available for export. Save the current results as a scenario to enable export.")
            
            # Add button to save current results as a scenario
            scenario_name = st.text_input("Scenario Name", value="Baseline")
            
            if st.button("Save Current Results as Scenario"):
                if "saved_scenarios" not in session_state:
                    session_state["saved_scenarios"] = {}
                
                # Save current results as a scenario
                session_state["saved_scenarios"][scenario_name] = {
                    "results": session_state["calculation_results"],
                    "building_info": session_state["building_info"],
                    "components": session_state["components"],
                    "timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
                }
                
                st.success(f"Scenario '{scenario_name}' saved successfully!")
                st.experimental_rerun()
        else:
            # Display saved scenarios
            st.write("### Saved Scenarios")
            
            # Create selectbox for scenarios
            scenario_names = list(session_state["saved_scenarios"].keys())
            selected_scenario = st.selectbox("Select Scenario to Export", scenario_names)
            
            if selected_scenario:
                # Get selected scenario
                scenario = session_state["saved_scenarios"][selected_scenario]
                
                # Display scenario information
                st.write(f"**Scenario:** {selected_scenario}")
                st.write(f"**Timestamp:** {scenario['timestamp']}")
                
                # Add download button
                json_data = DataExport.export_scenario_to_json(scenario)
                if json_data:
                    filename = f"{selected_scenario.replace(' ', '_').lower()}_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json"
                    download_link = DataExport.get_download_link(
                        json_data,
                        filename,
                        "Download Scenario JSON",
                        "application/json"
                    )
                    st.markdown(download_link, unsafe_allow_html=True)
            
            # Add button to export all scenarios
            if st.button("Export All Scenarios"):
                # Create a zip file in memory
                import zipfile
                from io import BytesIO
                
                zip_buffer = BytesIO()
                with zipfile.ZipFile(zip_buffer, "w", zipfile.ZIP_DEFLATED) as zip_file:
                    for scenario_name, scenario in session_state["saved_scenarios"].items():
                        # Export scenario to JSON
                        json_data = DataExport.export_scenario_to_json(scenario)
                        if json_data:
                            filename = f"{scenario_name.replace(' ', '_').lower()}.json"
                            zip_file.writestr(filename, json_data)
                
                # Add download button for zip file
                zip_buffer.seek(0)
                zip_data = zip_buffer.getvalue()
                
                filename = f"all_scenarios_{datetime.now().strftime('%Y%m%d_%H%M%S')}.zip"
                download_link = DataExport.get_download_link(
                    zip_data,
                    filename,
                    "Download All Scenarios (ZIP)",
                    "application/zip"
                )
                st.markdown(download_link, unsafe_allow_html=True)


# Create a singleton instance
data_export = DataExport()

# Example usage
if __name__ == "__main__":
    import streamlit as st
    
    # Initialize session state with dummy data for testing
    if "calculation_results" not in st.session_state:
        st.session_state["calculation_results"] = {
            "cooling": {
                "total_load": 25.5,
                "sensible_load": 20.0,
                "latent_load": 5.5,
                "load_per_area": 85.0,
                "component_loads": {
                    "walls": 5.0,
                    "roof": 3.0,
                    "windows": 8.0,
                    "doors": 1.0,
                    "people": 2.5,
                    "lighting": 2.0,
                    "equipment": 1.5,
                    "infiltration": 1.0,
                    "ventilation": 1.5
                },
                "detailed_loads": {
                    "walls": [
                        {"name": "North Wall", "orientation": "NORTH", "area": 20.0, "u_value": 0.5, "cltd": 10.0, "load": 1.0}
                    ],
                    "roofs": [
                        {"name": "Main Roof", "orientation": "HORIZONTAL", "area": 100.0, "u_value": 0.3, "cltd": 15.0, "load": 3.0}
                    ],
                    "windows": [
                        {"name": "South Window", "orientation": "SOUTH", "area": 10.0, "u_value": 2.8, "shgc": 0.7, "scl": 800.0, "load": 8.0}
                    ],
                    "doors": [
                        {"name": "Main Door", "orientation": "NORTH", "area": 2.0, "u_value": 2.0, "cltd": 10.0, "load": 1.0}
                    ],
                    "internal": [
                        {"type": "People", "name": "Occupants", "quantity": 10, "heat_gain": 250, "clf": 1.0, "load": 2.5},
                        {"type": "Lighting", "name": "General Lighting", "quantity": 1000, "heat_gain": 2000, "clf": 1.0, "load": 2.0},
                        {"type": "Equipment", "name": "Office Equipment", "quantity": 5, "heat_gain": 300, "clf": 1.0, "load": 1.5}
                    ],
                    "infiltration": {
                        "air_flow": 0.05,
                        "sensible_load": 0.8,
                        "latent_load": 0.2,
                        "total_load": 1.0
                    },
                    "ventilation": {
                        "air_flow": 0.1,
                        "sensible_load": 1.0,
                        "latent_load": 0.5,
                        "total_load": 1.5
                    }
                }
            },
            "heating": {
                "total_load": 30.0,
                "load_per_area": 100.0,
                "design_heat_loss": 27.0,
                "safety_factor": 10.0,
                "component_loads": {
                    "walls": 8.0,
                    "roof": 5.0,
                    "floor": 4.0,
                    "windows": 7.0,
                    "doors": 1.0,
                    "infiltration": 2.0,
                    "ventilation": 3.0
                },
                "detailed_loads": {
                    "walls": [
                        {"name": "North Wall", "orientation": "NORTH", "area": 20.0, "u_value": 0.5, "delta_t": 25.0, "load": 8.0}
                    ],
                    "roofs": [
                        {"name": "Main Roof", "orientation": "HORIZONTAL", "area": 100.0, "u_value": 0.3, "delta_t": 25.0, "load": 5.0}
                    ],
                    "floors": [
                        {"name": "Ground Floor", "area": 100.0, "u_value": 0.4, "delta_t": 10.0, "load": 4.0}
                    ],
                    "windows": [
                        {"name": "South Window", "orientation": "SOUTH", "area": 10.0, "u_value": 2.8, "delta_t": 25.0, "load": 7.0}
                    ],
                    "doors": [
                        {"name": "Main Door", "orientation": "NORTH", "area": 2.0, "u_value": 2.0, "delta_t": 25.0, "load": 1.0}
                    ],
                    "infiltration": {
                        "air_flow": 0.05,
                        "delta_t": 25.0,
                        "load": 2.0
                    },
                    "ventilation": {
                        "air_flow": 0.1,
                        "delta_t": 25.0,
                        "load": 3.0
                    }
                }
            }
        }
    
    # Display export interface
    data_export.display_export_interface(st.session_state)