Spaces:
Sleeping
Sleeping
File size: 60,187 Bytes
845939b 4d43eee 845939b 7c6670b 909f2fe 845939b 83da2d5 845939b 7c6670b 845939b 7007eef 845939b 6460f98 845939b 6460f98 845939b 7c6670b 845939b 7c6670b 4d43eee 845939b 7c6670b 4d43eee 7c6670b 845939b 7c6670b 845939b 7c6670b 845939b 7c6670b 845939b 6460f98 845939b 6460f98 845939b b8bf292 2b2edc0 b8bf292 4b2f09b b8bf292 822a8fe b8bf292 4b2f09b 845939b 4b2f09b 845939b 4b2f09b 6460f98 845939b 4b2f09b 845939b b8bf292 845939b 6460f98 845939b 6460f98 845939b b8bf292 822a8fe b8bf292 822a8fe b8bf292 845939b b8bf292 4b2f09b 845939b 4b2f09b 845939b 4b2f09b 6460f98 845939b 4b2f09b 845939b b8bf292 845939b 7c6670b 909f2fe 845939b d95021e 845939b cbb85e1 845939b 909f2fe 0225349 6a3b4aa 5a47894 6a3b4aa 909f2fe 6a3b4aa cbb85e1 909f2fe 0225349 909f2fe 0225349 909f2fe 6a3b4aa 909f2fe 6a3b4aa 909f2fe 6a3b4aa 909f2fe 0225349 909f2fe 0225349 7007eef 7c6670b 7007eef 909f2fe 7007eef 7c6670b 0225349 6a3b4aa 845939b cbb85e1 0225349 cbb85e1 5a47894 845939b cbb85e1 5a47894 cbb85e1 845939b 0225349 cbb85e1 845939b 5a47894 845939b 0225349 909f2fe 0225349 845939b 909f2fe 0225349 845939b 7c6670b 909f2fe 7c6670b cbb85e1 7c6670b cbb85e1 7c6670b cbb85e1 909f2fe 7c6670b cbb85e1 7c6670b 909f2fe d95021e 0225349 d95021e 6a3b4aa 5a47894 6a3b4aa 909f2fe 6a3b4aa cbb85e1 909f2fe d95021e 909f2fe d95021e 909f2fe 6a3b4aa 909f2fe 6a3b4aa 909f2fe 6a3b4aa 909f2fe d95021e 909f2fe d95021e 7c6670b 909f2fe 7c6670b d95021e cbb85e1 7c6670b cbb85e1 d95021e cbb85e1 5a47894 7c6670b cbb85e1 5a47894 cbb85e1 7c6670b d95021e cbb85e1 7c6670b 5a47894 7c6670b d95021e 909f2fe d95021e 7c6670b 909f2fe d95021e 7c6670b 845939b 6460f98 4d43eee 7007eef 845939b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 |
"""
Cooling load calculation module for HVAC Load Calculator.
Implements ASHRAE steady-state methods with Cooling Load Temperature Difference (CLTD).
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 18, Section 18.5.
Author: Dr Majed Abuseif
Date: April 2025
Version: 1.0.7
"""
from typing import Dict, List, Any, Optional, Tuple
import numpy as np
import logging
from data.ashrae_tables import ASHRAETables
from utils.heat_transfer import HeatTransferCalculations
from utils.psychrometrics import Psychrometrics
from app.component_selection import Wall, Roof, Window, Door, Skylight, Orientation
from data.drapery import Drapery, GlazingType, FrameType, WINDOW_U_FACTORS, WINDOW_SHGC, SKYLIGHT_U_FACTORS, SKYLIGHT_SHGC, CLTDCalculator
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
class CoolingLoadCalculator:
"""Class for cooling load calculations based on ASHRAE steady-state methods."""
def __init__(self, debug_mode: bool = False):
"""
Initialize cooling load calculator.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 18, Section 18.5.
Args:
debug_mode: Enable debug logging if True
"""
self.ashrae_tables = ASHRAETables()
self.heat_transfer = HeatTransferCalculations()
self.psychrometrics = Psychrometrics()
self.hours = list(range(24))
self.valid_latitudes = ['24N', '32N', '40N', '48N', '56N']
self.valid_months = ['JAN', 'FEB', 'MAR', 'APR', 'MAY', 'JUN', 'JUL', 'AUG', 'SEP', 'OCT', 'NOV', 'DEC']
self.valid_wall_groups = ['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H']
self.valid_roof_groups = ['A', 'B', 'C', 'D', 'E', 'F', 'G']
self.debug_mode = debug_mode
if debug_mode:
logger.setLevel(logging.DEBUG)
def validate_latitude(self, latitude: Any) -> str:
"""
Validate and normalize latitude input.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 14, Section 14.2.
Args:
latitude: Latitude input (str, float, or other)
Returns:
Valid latitude string ('24N', '32N', '40N', '48N', '56N')
"""
try:
if not isinstance(latitude, str):
try:
lat_val = float(latitude)
if lat_val <= 28:
return '24N'
elif lat_val <= 36:
return '32N'
elif lat_val <= 44:
return '40N'
elif lat_val <= 52:
return '48N'
else:
return '56N'
except (ValueError, TypeError):
latitude = str(latitude)
latitude = latitude.strip().upper()
if self.debug_mode:
logger.debug(f"Validating latitude: {latitude}")
if '_' in latitude:
parts = latitude.split('_')
if len(parts) > 1:
lat_part = parts[0]
if self.debug_mode:
logger.warning(f"Detected concatenated input: {latitude}. Using latitude={lat_part}")
latitude = lat_part
if '.' in latitude or any(c.isdigit() for c in latitude):
num_part = ''.join(c for c in latitude if c.isdigit() or c == '.')
try:
lat_val = float(num_part)
if lat_val <= 28:
mapped_latitude = '24N'
elif lat_val <= 36:
mapped_latitude = '32N'
elif lat_val <= 44:
mapped_latitude = '40N'
elif lat_val <= 52:
mapped_latitude = '48N'
else:
mapped_latitude = '56N'
if self.debug_mode:
logger.debug(f"Mapped numerical latitude {lat_val} to {mapped_latitude}")
return mapped_latitude
except ValueError:
if self.debug_mode:
logger.warning(f"Cannot parse numerical latitude: {latitude}. Defaulting to '32N'")
return '32N'
if latitude in self.valid_latitudes:
return latitude
if self.debug_mode:
logger.warning(f"Invalid latitude: {latitude}. Defaulting to '32N'")
return '32N'
except Exception as e:
if self.debug_mode:
logger.error(f"Error validating latitude {latitude}: {str(e)}")
return '32N'
def validate_month(self, month: Any) -> str:
"""
Validate and normalize month input.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 14, Section 14.2.
Args:
month: Month input (str or other)
Returns:
Valid month string in uppercase
"""
try:
if not isinstance(month, str):
month = str(month)
month_upper = month.strip().upper()
if month_upper not in self.valid_months:
if self.debug_mode:
logger.warning(f"Invalid month: {month}. Defaulting to 'JUL'")
return 'JUL'
return month_upper
except Exception as e:
if self.debug_mode:
logger.error(f"Error validating month {month}: {str(e)}")
return 'JUL'
def validate_hour(self, hour: Any) -> int:
"""
Validate and normalize hour input.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 14, Section 14.2.
Args:
hour: Hour input (int, float, or other)
Returns:
Valid hour integer (0-23)
"""
try:
hour = int(float(str(hour)))
if not 0 <= hour <= 23:
if self.debug_mode:
logger.warning(f"Invalid hour: {hour}. Defaulting to 15")
return 15
return hour
except (ValueError, TypeError):
if self.debug_mode:
logger.warning(f"Invalid hour format: {hour}. Defaulting to 15")
return 15
def validate_conditions(self, outdoor_temp: float, indoor_temp: float,
outdoor_rh: float, indoor_rh: float) -> None:
"""
Validate temperature and relative humidity inputs.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 1, Section 1.2.
Args:
outdoor_temp: Outdoor temperature in °C
indoor_temp: Indoor temperature in °C
outdoor_rh: Outdoor relative humidity in %
indoor_rh: Indoor relative humidity in %
Raises:
ValueError: If inputs are invalid
"""
if not -50 <= outdoor_temp <= 60 or not -50 <= indoor_temp <= 60:
raise ValueError("Temperatures must be between -50°C and 60°C")
if not 0 <= outdoor_rh <= 100 or not 0 <= indoor_rh <= 100:
raise ValueError("Relative humidities must be between 0 and 100%")
if outdoor_temp - indoor_temp < 1:
raise ValueError("Outdoor temperature must be at least 1°C above indoor temperature for cooling")
def calculate_hourly_cooling_loads(
self,
building_components: Dict[str, List[Any]],
outdoor_conditions: Dict[str, Any],
indoor_conditions: Dict[str, Any],
internal_loads: Dict[str, Any],
building_volume: float,
p_atm: float = 101325
) -> Dict[str, Any]:
"""
Calculate hourly cooling loads for all components.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 18, Section 18.5.
Args:
building_components: Dictionary of building components
outdoor_conditions: Outdoor weather conditions (temperature, relative_humidity, latitude, month)
indoor_conditions: Indoor design conditions (temperature, relative_humidity)
internal_loads: Internal heat gains (people, lights, equipment, infiltration, ventilation)
building_volume: Building volume in cubic meters
p_atm: Atmospheric pressure in Pa (default: 101325 Pa)
Returns:
Dictionary containing hourly cooling loads
"""
hourly_loads = {
'walls': {h: 0.0 for h in range(1, 25)},
'roofs': {h: 0.0 for h in range(1, 25)},
'windows_conduction': {h: 0.0 for h in range(1, 25)},
'windows_solar': {h: 0.0 for h in range(1, 25)},
'skylights_conduction': {h: 0.0 for h in range(1, 25)},
'skylights_solar': {h: 0.0 for h in range(1, 25)},
'doors': {h: 0.0 for h in range(1, 25)},
'people_sensible': {h: 0.0 for h in range(1, 25)},
'people_latent': {h: 0.0 for h in range(1, 25)},
'lights': {h: 0.0 for h in range(1, 25)},
'equipment_sensible': {h: 0.0 for h in range(1, 25)},
'equipment_latent': {h: 0.0 for h in range(1, 25)},
'infiltration_sensible': {h: 0.0 for h in range(1, 25)},
'infiltration_latent': {h: 0.0 for h in range(1, 25)},
'ventilation_sensible': {h: 0.0 for h in range(1, 25)},
'ventilation_latent': {h: 0.0 for h in range(1, 25)}
}
try:
# Validate conditions
self.validate_conditions(
outdoor_conditions['temperature'],
indoor_conditions['temperature'],
outdoor_conditions.get('relative_humidity', 50.0),
indoor_conditions.get('relative_humidity', 50.0)
)
latitude = self.validate_latitude(outdoor_conditions.get('latitude', '32N'))
month = self.validate_month(outdoor_conditions.get('month', 'JUL'))
if self.debug_mode:
logger.debug(f"calculate_hourly_cooling_loads: latitude={latitude}, month={month}, outdoor_conditions={outdoor_conditions}")
# Calculate loads for walls
for wall in building_components.get('walls', []):
for hour in range(24):
load = self.calculate_wall_cooling_load(
wall=wall,
outdoor_temp=outdoor_conditions['temperature'],
indoor_temp=indoor_conditions['temperature'],
month=month,
hour=hour,
latitude=latitude,
solar_absorptivity=wall.solar_absorptivity
)
hourly_loads['walls'][hour + 1] += load
# Calculate loads for roofs
for roof in building_components.get('roofs', []):
for hour in range(24):
load = self.calculate_roof_cooling_load(
roof=roof,
outdoor_temp=outdoor_conditions['temperature'],
indoor_temp=indoor_conditions['temperature'],
month=month,
hour=hour,
latitude=latitude,
solar_absorptivity=roof.solar_absorptivity
)
hourly_loads['roofs'][hour + 1] += load
# Calculate loads for windows
for window in building_components.get('windows', []):
for hour in range(24):
adjusted_shgc = getattr(window, 'adjusted_shgc', None)
load_dict = self.calculate_window_cooling_load(
window=window,
outdoor_temp=outdoor_conditions['temperature'],
indoor_temp=indoor_conditions['temperature'],
month=month,
hour=hour,
latitude=latitude,
shading_coefficient=window.shading_coefficient,
adjusted_shgc=adjusted_shgc
)
hourly_loads['windows_conduction'][hour + 1] += load_dict['conduction']
hourly_loads['windows_solar'][hour + 1] += load_dict['solar']
# Calculate loads for skylights
for skylight in building_components.get('skylights', []):
for hour in range(24):
adjusted_shgc = getattr(skylight, 'adjusted_shgc', None)
load_dict = self.calculate_skylight_cooling_load(
skylight=skylight,
outdoor_temp=outdoor_conditions['temperature'],
indoor_temp=indoor_conditions['temperature'],
month=month,
hour=hour,
latitude=latitude,
shading_coefficient=skylight.shading_coefficient,
adjusted_shgc=adjusted_shgc
)
hourly_loads['skylights_conduction'][hour + 1] += load_dict['conduction']
hourly_loads['skylights_solar'][hour + 1] += load_dict['solar']
# Calculate loads for doors
for door in building_components.get('doors', []):
for hour in range(24):
load = self.calculate_door_cooling_load(
door=door,
outdoor_temp=outdoor_conditions['temperature'],
indoor_temp=indoor_conditions['temperature']
)
hourly_loads['doors'][hour + 1] += load
# Calculate internal loads
for hour in range(24):
# People loads
people_load = self.calculate_people_cooling_load(
num_people=internal_loads['people']['number'],
activity_level=internal_loads['people']['activity_level'],
hour=hour
)
hourly_loads['people_sensible'][hour + 1] += people_load['sensible']
hourly_loads['people_latent'][hour + 1] += people_load['latent']
# Lighting loads
lights_load = self.calculate_lights_cooling_load(
power=internal_loads['lights']['power'],
use_factor=internal_loads['lights']['use_factor'],
special_allowance=internal_loads['lights']['special_allowance'],
hour=hour
)
hourly_loads['lights'][hour + 1] += lights_load
# Equipment loads
equipment_load = self.calculate_equipment_cooling_load(
power=internal_loads['equipment']['power'],
use_factor=internal_loads['equipment']['use_factor'],
radiation_factor=internal_loads['equipment']['radiation_factor'],
hour=hour
)
hourly_loads['equipment_sensible'][hour + 1] += equipment_load['sensible']
hourly_loads['equipment_latent'][hour + 1] += equipment_load['latent']
# Infiltration loads
infiltration_load = self.calculate_infiltration_cooling_load(
flow_rate=internal_loads['infiltration']['flow_rate'],
building_volume=building_volume,
outdoor_temp=outdoor_conditions['temperature'],
outdoor_rh=outdoor_conditions['relative_humidity'],
indoor_temp=indoor_conditions['temperature'],
indoor_rh=indoor_conditions['relative_humidity'],
p_atm=p_atm
)
hourly_loads['infiltration_sensible'][hour + 1] += infiltration_load['sensible']
hourly_loads['infiltration_latent'][hour + 1] += infiltration_load['latent']
# Ventilation loads
ventilation_load = self.calculate_ventilation_cooling_load(
flow_rate=internal_loads['ventilation']['flow_rate'],
outdoor_temp=outdoor_conditions['temperature'],
outdoor_rh=outdoor_conditions['relative_humidity'],
indoor_temp=indoor_conditions['temperature'],
indoor_rh=indoor_conditions['relative_humidity'],
p_atm=p_atm
)
hourly_loads['ventilation_sensible'][hour + 1] += ventilation_load['sensible']
hourly_loads['ventilation_latent'][hour + 1] += ventilation_load['latent']
return hourly_loads
except Exception as e:
if self.debug_mode:
logger.error(f"Error in calculate_hourly_cooling_loads: {str(e)}")
raise Exception(f"Error in calculate_hourly_cooling_loads: {str(e)}")
def calculate_design_cooling_load(self, hourly_loads: Dict[str, Any]) -> Dict[str, Any]:
"""
Calculate design cooling load based on peak hourly loads.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 18, Section 18.5.
Args:
hourly_loads: Dictionary of hourly cooling loads
Returns:
Dictionary containing design cooling loads
"""
try:
design_loads = {}
total_loads = []
for hour in range(1, 25):
total_load = sum([
hourly_loads['walls'][hour],
hourly_loads['roofs'][hour],
hourly_loads['windows_conduction'][hour],
hourly_loads['windows_solar'][hour],
hourly_loads['skylights_conduction'][hour],
hourly_loads['skylights_solar'][hour],
hourly_loads['doors'][hour],
hourly_loads['people_sensible'][hour],
hourly_loads['people_latent'][hour],
hourly_loads['lights'][hour],
hourly_loads['equipment_sensible'][hour],
hourly_loads['equipment_latent'][hour],
hourly_loads['infiltration_sensible'][hour],
hourly_loads['infiltration_latent'][hour],
hourly_loads['ventilation_sensible'][hour],
hourly_loads['ventilation_latent'][hour]
])
total_loads.append(total_load)
design_hour = range(1, 25)[np.argmax(total_loads)]
design_loads = {
'design_hour': design_hour,
'walls': hourly_loads['walls'][design_hour],
'roofs': hourly_loads['roofs'][design_hour],
'windows_conduction': hourly_loads['windows_conduction'][design_hour],
'windows_solar': hourly_loads['windows_solar'][design_hour],
'skylights_conduction': hourly_loads['skylights_conduction'][design_hour],
'skylights_solar': hourly_loads['skylights_solar'][design_hour],
'doors': hourly_loads['doors'][design_hour],
'people_sensible': hourly_loads['people_sensible'][design_hour],
'people_latent': hourly_loads['people_latent'][design_hour],
'lights': hourly_loads['lights'][design_hour],
'equipment_sensible': hourly_loads['equipment_sensible'][design_hour],
'equipment_latent': hourly_loads['equipment_latent'][design_hour],
'infiltration_sensible': hourly_loads['infiltration_sensible'][design_hour],
'infiltration_latent': hourly_loads['infiltration_latent'][design_hour],
'ventilation_sensible': hourly_loads['ventilation_sensible'][design_hour],
'ventilation_latent': hourly_loads['ventilation_latent'][design_hour]
}
return design_loads
except Exception as e:
if self.debug_mode:
logger.error(f"Error in calculate_design_cooling_load: {str(e)}")
raise Exception(f"Error in calculate_design_cooling_load: {str(e)}")
def calculate_cooling_load_summary(self, design_loads: Dict[str, Any]) -> Dict[str, float]:
"""
Calculate summary of cooling loads.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 18, Section 18.5.
Args:
design_loads: Dictionary of design cooling loads
Returns:
Dictionary containing cooling load summary
"""
try:
total_sensible = (
design_loads['walls'] +
design_loads['roofs'] +
design_loads['windows_conduction'] +
design_loads['windows_solar'] +
design_loads['skylights_conduction'] +
design_loads['skylights_solar'] +
design_loads['doors'] +
design_loads['people_sensible'] +
design_loads['lights'] +
design_loads['equipment_sensible'] +
design_loads['infiltration_sensible'] +
design_loads['ventilation_sensible']
)
total_latent = (
design_loads['people_latent'] +
design_loads['equipment_latent'] +
design_loads['infiltration_latent'] +
design_loads['ventilation_latent']
)
total = total_sensible + total_latent
return {
'total_sensible': total_sensible,
'total_latent': total_latent,
'total': total
}
except Exception as e:
if self.debug_mode:
logger.error(f"Error in calculate_cooling_load_summary: {str(e)}")
raise Exception(f"Error in calculate_cooling_load_summary: {str(e)}")
def calculate_wall_cooling_load(
self,
wall: Wall,
outdoor_temp: float,
indoor_temp: float,
month: str,
hour: int,
latitude: str,
solar_absorptivity: float
) -> float:
"""
Calculate cooling load for a wall using CLTD method.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 18, Equation 18.10.
Args:
wall: Wall component
outdoor_temp: Outdoor temperature (°C)
indoor_temp: Indoor temperature (°C)
month: Design month
hour: Hour of the day
latitude: Latitude (e.g., '24N')
solar_absorptivity: Solar absorptivity of the wall surface (0.0 to 1.0)
Returns:
Cooling load in Watts
"""
try:
latitude = self.validate_latitude(latitude)
month = self.validate_month(month)
hour = self.validate_hour(hour)
wall_group = str(wall.wall_group).upper() if hasattr(wall, 'wall_group') else 'A'
numeric_map = {'1': 'A', '2': 'B', '3': 'C', '4': 'D', '5': 'E', '6': 'F', '7': 'G', '8': 'H'}
if wall_group in numeric_map:
wall_group = numeric_map[wall_group]
if self.debug_mode:
logger.info(f"Mapped wall_group {wall.wall_group} to {wall_group}")
elif wall_group not in self.valid_wall_groups:
if self.debug_mode:
logger.warning(f"Invalid wall group: {wall_group}. Defaulting to 'A'")
wall_group = 'A'
try:
lat_value = float(latitude.replace('N', ''))
if self.debug_mode:
logger.debug(f"Converted latitude {latitude} to {lat_value} for wall CLTD")
except ValueError:
if self.debug_mode:
logger.error(f"Invalid latitude format: {latitude}. Defaulting to 32.0")
lat_value = 32.0
if self.debug_mode:
logger.debug(f"Calling get_cltd for wall: group={wall_group}, orientation={wall.orientation.value}, hour={hour}, latitude={lat_value}, solar_absorptivity={solar_absorptivity}")
try:
cltd_f = self.ashrae_tables.get_cltd(
element_type='wall',
group=wall_group,
orientation=wall.orientation.value,
hour=hour,
latitude=lat_value,
solar_absorptivity=solar_absorptivity
)
cltd = (cltd_f - 32) * 5 / 9 # Convert °F to °C
except Exception as e:
if self.debug_mode:
logger.error(f"get_cltd failed for wall_group={wall_group}, latitude={lat_value}: {str(e)}")
logger.warning("Using default CLTD=8.0°C")
cltd = 8.0
load = wall.u_value * wall.area * cltd
if self.debug_mode:
logger.debug(f"Wall load: u_value={wall.u_value}, area={wall.area}, cltd={cltd}, load={load}")
return max(load, 0.0)
except Exception as e:
if self.debug_mode:
logger.error(f"Error in calculate_wall_cooling_load: {str(e)}")
raise Exception(f"Error in calculate_wall_cooling_load: {str(e)}")
def calculate_roof_cooling_load(
self,
roof: Roof,
outdoor_temp: float,
indoor_temp: float,
month: str,
hour: int,
latitude: str,
solar_absorptivity: float
) -> float:
"""
Calculate cooling load for a roof using CLTD method.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 18, Equation 18.10.
Args:
roof: Roof component
outdoor_temp: Outdoor temperature (°C)
indoor_temp: Indoor temperature (°C)
month: Design month
hour: Hour of the day
latitude: Latitude (e.g., '24N')
solar_absorptivity: Solar absorptivity of the roof surface (0.0 to 1.0)
Returns:
Cooling load in Watts
"""
try:
latitude = self.validate_latitude(latitude)
month = self.validate_month(month)
hour = self.validate_hour(hour)
roof_group = str(roof.roof_group).upper() if hasattr(roof, 'roof_group') else 'A'
numeric_map = {'1': 'A', '2': 'B', '3': 'C', '4': 'D', '5': 'E', '6': 'F', '7': 'G', '8': 'G'}
if roof_group in numeric_map:
roof_group = numeric_map[roof_group]
if self.debug_mode:
logger.info(f"Mapped roof_group {roof.roof_group} to {roof_group}")
elif roof_group not in self.valid_roof_groups:
if self.debug_mode:
logger.warning(f"Invalid roof group: {roof_group}. Defaulting to 'A'")
roof_group = 'A'
try:
lat_value = float(latitude.replace('N', ''))
if self.debug_mode:
logger.debug(f"Converted latitude {latitude} to {lat_value} for roof CLTD")
except ValueError:
if self.debug_mode:
logger.error(f"Invalid latitude format: {latitude}. Defaulting to 32.0")
lat_value = 32.0
if self.debug_mode:
logger.debug(f"Calling get_cltd for roof: group={roof_group}, orientation={roof.orientation.value}, hour={hour}, latitude={lat_value}, solar_absorptivity={solar_absorptivity}")
try:
cltd_f = self.ashrae_tables.get_cltd(
element_type='roof',
group=roof_group,
orientation=roof.orientation.value,
hour=hour,
latitude=lat_value,
solar_absorptivity=solar_absorptivity
)
cltd = (cltd_f - 32) * 5 / 9 # Convert °F to °C
except Exception as e:
if self.debug_mode:
logger.error(f"get_cltd failed for roof_group={roof_group}, latitude={lat_value}: {str(e)}")
logger.warning("Using default CLTD=8.0°C")
cltd = 8.0
load = roof.u_value * roof.area * cltd
if self.debug_mode:
logger.debug(f"Roof load: u_value={roof.u_value}, area={roof.area}, cltd={cltd}, load={load}")
return max(load, 0.0)
except Exception as e:
if self.debug_mode:
logger.error(f"Error in calculate_roof_cooling_load: {str(e)}")
raise Exception(f"Error in calculate_roof_cooling_load: {str(e)}")
def calculate_window_cooling_load(
self,
window: Window,
outdoor_temp: float,
indoor_temp: float,
month: str,
hour: int,
latitude: str,
shading_coefficient: float,
adjusted_shgc: Optional[float] = None,
glazing_type: Optional[str] = None,
frame_type: Optional[str] = None
) -> Dict[str, float]:
"""
Calculate cooling load for a window (conduction and solar).
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 18, Equations 18.12-18.13.
Args:
window: Window component
outdoor_temp: Outdoor temperature (°C)
indoor_temp: Indoor temperature (°C)
month: Design month (e.g., 'JUL')
hour: Hour of the day
latitude: Latitude (e.g., '40N')
shading_coefficient: Default shading coefficient
adjusted_shgc: Adjusted SHGC from external drapery calculation (optional)
glazing_type: Glazing type (e.g., 'Single Clear') (optional)
frame_type: Frame type (e.g., 'Aluminum without Thermal Break') (optional)
Returns:
Dictionary with conduction, solar, and total loads in Watts
"""
try:
# Validate inputs
latitude = self.validate_latitude(latitude)
month = self.validate_month(month)
hour = self.validate_hour(hour)
if self.debug_mode:
logger.debug(f"calculate_window_cooling_load: latitude={latitude}, month={month}, hour={hour}, orientation={window.orientation.value}, glazing_type={glazing_type}, frame_type={frame_type}")
# Convert month string to integer for CLTDCalculator
month_map = {'JAN': 1, 'FEB': 2, 'MAR': 3, 'APR': 4, 'MAY': 5, 'JUN': 6,
'JUL': 7, 'AUG': 8, 'SEP': 9, 'OCT': 10, 'NOV': 11, 'DEC': 12}
month_int = month_map.get(month.upper(), 7) # Default to July
if self.debug_mode:
logger.debug(f"Month converted: {month} -> {month_int}")
# Convert string latitude to numerical for SCL interpolation only
try:
lat_value = float(latitude.replace('N', ''))
except ValueError:
if self.debug_mode:
logger.error(f"Invalid latitude format: {latitude}. Defaulting to 32.0")
lat_value = 32.0
# Initialize CLTDCalculator with string latitude
cltd_calculator = CLTDCalculator(
indoor_temp=indoor_temp,
outdoor_max_temp=outdoor_temp,
outdoor_daily_range=11.7, # Default from drapery.py
latitude=latitude, # Use string latitude
month=month_int
)
# Determine U-factor and SHGC
u_value = window.u_value
shgc = window.shgc
if glazing_type and frame_type:
try:
glazing_enum = next(g for g in GlazingType if g.value == glazing_type)
frame_enum = next(f for f in FrameType if f.value == frame_type)
u_value = WINDOW_U_FACTORS.get((glazing_enum, frame_enum), window.u_value)
shgc = WINDOW_SHGC.get((glazing_enum, frame_enum), window.shgc)
if self.debug_mode:
logger.debug(f"Using table values: u_value={u_value}, shgc={shgc} for glazing_type={glazing_type}, frame_type={frame_type}")
except StopIteration:
if self.debug_mode:
logger.warning(f"Invalid glazing_type={glazing_type} or frame_type={frame_type}. Using default u_value={u_value}, shgc={shgc}")
# Conduction load using CLTD
try:
glazing_key = glazing_type if glazing_type in ['Single Clear', 'Double Tinted', 'Low-E', 'Reflective'] else 'SingleClear'
cltd = cltd_calculator.get_cltd_window(
glazing_type=glazing_key,
orientation=window.orientation.value,
hour=hour
)
if self.debug_mode:
logger.debug(f"CLTD from CLTDCalculator: {cltd} for glazing_type={glazing_key}, latitude={latitude}")
except Exception as e:
if self.debug_mode:
logger.error(f"get_cltd_window failed for glazing_type={glazing_key}, latitude={latitude}: {str(e)}")
logger.warning("Using default CLTD=8.0°C")
cltd = 8.0
conduction_load = u_value * window.area * cltd
# Determine shading coefficient
effective_shading_coefficient = adjusted_shgc if adjusted_shgc is not None else shading_coefficient
if adjusted_shgc is None and hasattr(window, 'drapery') and window.drapery and window.drapery.enabled:
try:
effective_shading_coefficient = window.drapery.get_shading_coefficient(shgc)
if self.debug_mode:
logger.debug(f"Using drapery shading coefficient: {effective_shading_coefficient}")
except Exception as e:
if self.debug_mode:
logger.warning(f"Error getting drapery shading coefficient: {str(e)}. Using default shading_coefficient={shading_coefficient}")
else:
if self.debug_mode:
logger.debug(f"Using shading coefficient: {effective_shading_coefficient} (adjusted_shgc={adjusted_shgc}, drapery={'enabled' if hasattr(window, 'drapery') and window.drapery and window.drapery.enabled else 'disabled'})")
# Solar load with latitude Interpolation
try:
latitudes = [24, 32, 40, 48, 56]
lat1 = max([lat for lat in latitudes if lat <= lat_value], default=24)
lat2 = min([lat for lat in latitudes if lat >= lat_value], default=56)
scl1 = cltd_calculator.ashrae_tables.get_scl(
latitude=float(lat1),
orientation=window.orientation.value,
hour=hour,
month=month_int
)
scl2 = cltd_calculator.ashrae_tables.get_scl(
latitude=float(lat2),
orientation=window.orientation.value,
hour=hour,
month=month_int
)
# Interpolate SCL
if lat1 == lat2:
scl = scl1
else:
weight = (lat_value - lat1) / (lat2 - lat1)
scl = scl1 + weight * (scl2 - scl1)
if self.debug_mode:
logger.debug(f"SCL interpolated: scl1={scl1}, scl2={scl2}, lat1={lat1}, lat2={lat2}, weight={weight}, scl={scl}")
except Exception as e:
if self.debug_mode:
logger.error(f"get_scl failed for latitude={lat_value}, month={month}, orientation={window.orientation.value}: {str(e)}")
logger.warning("Using default SCL=100 W/m²")
scl = 100.0
solar_load = window.area * shgc * effective_shading_coefficient * scl
total_load = conduction_load + solar_load
if self.debug_mode:
logger.debug(f"Window load: conduction={conduction_load}, solar={solar_load}, total={total_load}, u_value={u_value}, shgc={shgc}, cltd={cltd}, effective_shading_coefficient={effective_shading_coefficient}")
return {
'conduction': max(conduction_load, 0.0),
'solar': max(solar_load, 0.0),
'total': max(total_load, 0.0)
}
except Exception as e:
if self.debug_mode:
logger.error(f"Error in calculate_window_cooling_load: {str(e)}")
raise Exception(f"Error in calculate_window_cooling_load: {str(e)}")
def calculate_skylight_cooling_load(
self,
skylight: Skylight,
outdoor_temp: float,
indoor_temp: float,
month: str,
hour: int,
latitude: str,
shading_coefficient: float,
adjusted_shgc: Optional[float] = None,
glazing_type: Optional[str] = None,
frame_type: Optional[str] = None
) -> Dict[str, float]:
"""
Calculate cooling load for a skylight (conduction and solar).
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 18, Equations 18.12-18.13.
Args:
skylight: Skylight component
outdoor_temp: Outdoor temperature (°C)
indoor_temp: Indoor temperature (°C)
month: Design month (e.g., 'JUL')
hour: Hour of the day
latitude: Latitude (e.g., '40N')
shading_coefficient: Default shading coefficient
adjusted_shgc: Adjusted SHGC from external drapery calculation (optional)
glazing_type: Glazing type (e.g., 'Single Clear') (optional)
frame_type: Frame type (e.g., 'Aluminum without Thermal Break') (optional)
Returns:
Dictionary with conduction, solar, and total loads in Watts
"""
try:
# Validate inputs
latitude = self.validate_latitude(latitude)
month = self.validate_month(month)
hour = self.validate_hour(hour)
if self.debug_mode:
logger.debug(f"calculate_skylight_cooling_load: latitude={latitude}, month={month}, hour={hour}, orientation=Horizontal, glazing_type={glazing_type}, frame_type={frame_type}")
# Convert month string to integer for CLTDCalculator
month_map = {'JAN': 1, 'FEB': 2, 'MAR': 3, 'APR': 4, 'MAY': 5, 'JUN': 6,
'JUL': 7, 'AUG': 8, 'SEP': 9, 'OCT': 10, 'NOV': 11, 'DEC': 12}
month_int = month_map.get(month.upper(), 7) # Default to July
if self.debug_mode:
logger.debug(f"Month converted: {month} -> {month_int}")
# Convert string latitude to numerical for SCL interpolation only
try:
lat_value = float(latitude.replace('N', ''))
except ValueError:
if self.debug_mode:
logger.error(f"Invalid latitude format: {latitude}. Defaulting to 32.0")
lat_value = 32.0
# Initialize CLTDCalculator with string latitude
cltd_calculator = CLTDCalculator(
indoor_temp=indoor_temp,
outdoor_max_temp=outdoor_temp,
outdoor_daily_range=11.7, # Default from drapery.py
latitude=latitude, # Use string latitude
month=month_int
)
# Determine U-factor and SHGC
u_value = skylight.u_value
shgc = skylight.shgc
if glazing_type and frame_type:
try:
glazing_enum = next(g for g in GlazingType if g.value == glazing_type)
frame_enum = next(f for f in FrameType if f.value == frame_type)
u_value = SKYLIGHT_U_FACTORS.get((glazing_enum, frame_enum), skylight.u_value)
shgc = SKYLIGHT_SHGC.get((glazing_enum, frame_enum), skylight.shgc)
if self.debug_mode:
logger.debug(f"Using table values: u_value={u_value}, shgc={shgc} for glazing_type={glazing_type}, frame_type={frame_type}")
except StopIteration:
if self.debug_mode:
logger.warning(f"Invalid glazing_type={glazing_type} or frame_type={frame_type}. Using default u_value={u_value}, shgc={shgc}")
# Conduction load using CLTD
try:
glazing_key = glazing_type if glazing_type in ['Single Clear', 'Double Tinted', 'Low-E', 'Reflective'] else 'SingleClear'
cltd = cltd_calculator.get_cltd_skylight(
glazing_type=glazing_key,
hour=hour
)
if self.debug_mode:
logger.debug(f"CLTD from CLTDCalculator: {cltd} for glazing_type={glazing_key}, latitude={latitude}")
except Exception as e:
if self.debug_mode:
logger.error(f"get_cltd_skylight failed for glazing_type={glazing_key}, latitude={latitude}: {str(e)}")
logger.warning("Using default CLTD=8.0°C")
cltd = 8.0
conduction_load = u_value * skylight.area * cltd
# Determine shading coefficient
effective_shading_coefficient = adjusted_shgc if adjusted_shgc is not None else shading_coefficient
if adjusted_shgc is None and hasattr(skylight, 'drapery') and skylight.drapery and skylight.drapery.enabled:
try:
effective_shading_coefficient = skylight.drapery.get_shading_coefficient(shgc)
if self.debug_mode:
logger.debug(f"Using drapery shading coefficient: {effective_shading_coefficient}")
except Exception as e:
if self.debug_mode:
logger.warning(f"Error getting drapery shading coefficient: {str(e)}. Using default shading_coefficient={shading_coefficient}")
else:
if self.debug_mode:
logger.debug(f"Using shading coefficient: {effective_shading_coefficient} (adjusted_shgc={adjusted_shgc}, drapery={'enabled' if hasattr(skylight, 'drapery') and skylight.drapery and skylight.drapery.enabled else 'disabled'})")
# Solar load with latitude interpolation
try:
latitudes = [24, 32, 40, 48, 56]
lat1 = max([lat for lat in latitudes if lat <= lat_value], default=24)
lat2 = min([lat for lat in latitudes if lat >= lat_value], default=56)
scl1 = cltd_calculator.ashrae_tables.get_scl(
latitude=float(lat1),
orientation='Horizontal',
hour=hour,
month=month_int
)
scl2 = cltd_calculator.ashrae_tables.get_scl(
latitude=float(lat2),
orientation='Horizontal',
hour=hour,
month=month_int
)
# Interpolate SCL
if lat1 == lat2:
scl = scl1
else:
weight = (lat_value - lat1) / (lat2 - lat1)
scl = scl1 + weight * (scl2 - scl1)
if self.debug_mode:
logger.debug(f"SCL interpolated: scl1={scl1}, scl2={scl2}, lat1={lat1}, lat2={lat2}, weight={weight}, scl={scl}")
except Exception as e:
if self.debug_mode:
logger.error(f"get_scl failed for latitude={lat_value}, month={month}, orientation=Horizontal: {str(e)}")
logger.warning("Using default SCL=100 W/m²")
scl = 100.0
solar_load = skylight.area * shgc * effective_shading_coefficient * scl
total_load = conduction_load + solar_load
if self.debug_mode:
logger.debug(f"Skylight load: conduction={conduction_load}, solar={solar_load}, total={total_load}, u_value={u_value}, shgc={shgc}, cltd={cltd}, effective_shading_coefficient={effective_shading_coefficient}")
return {
'conduction': max(conduction_load, 0.0),
'solar': max(solar_load, 0.0),
'total': max(total_load, 0.0)
}
except Exception as e:
if self.debug_mode:
logger.error(f"Error in calculate_skylight_cooling_load: {str(e)}")
raise Exception(f"Error in calculate_skylight_cooling_load: {str(e)}")
def calculate_door_cooling_load(
self,
door: Door,
outdoor_temp: float,
indoor_temp: float
) -> float:
"""
Calculate cooling load for a door.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 18, Equation 18.1.
Args:
door: Door component
outdoor_temp: Outdoor temperature (°C)
indoor_temp: Indoor temperature (°C)
Returns:
Cooling load in Watts
"""
try:
if self.debug_mode:
logger.debug(f"calculate_door_cooling_load: u_value={door.u_value}, area={door.area}")
cltd = outdoor_temp - indoor_temp
load = door.u_value * door.area * cltd
if self.debug_mode:
logger.debug(f"Door load: cltd={cltd}, load={load}")
return max(load, 0.0)
except Exception as e:
if self.debug_mode:
logger.error(f"Error in calculate_door_cooling_load: {str(e)}")
raise Exception(f"Error in calculate_door_cooling_load: {str(e)}")
def calculate_people_cooling_load(
self,
num_people: int,
activity_level: str,
hour: int
) -> Dict[str, float]:
"""
Calculate cooling load from people.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 18, Table 18.4.
Args:
num_people: Number of people
activity_level: Activity level ('Seated/Resting', 'Light Work', etc.)
hour: Hour of the day
Returns:
Dictionary with sensible and latent loads in Watts
"""
try:
hour = self.validate_hour(hour)
if self.debug_mode:
logger.debug(f"calculate_people_cooling_load: num_people={num_people}, activity_level={activity_level}, hour={hour}")
heat_gains = {
'Seated/Resting': {'sensible': 70, 'latent': 45},
'Light Work': {'sensible': 85, 'latent': 65},
'Moderate Work': {'sensible': 100, 'latent': 100},
'Heavy Work': {'sensible': 145, 'latent': 170}
}
gains = heat_gains.get(activity_level, heat_gains['Seated/Resting'])
if activity_level not in heat_gains:
if self.debug_mode:
logger.warning(f"Invalid activity_level: {activity_level}. Defaulting to 'Seated/Resting'")
try:
clf = self.ashrae_tables.get_clf_people(
zone_type='A',
hours_occupied='6h',
hour=hour
)
except Exception as e:
if self.debug_mode:
logger.error(f"get_clf_people failed: {str(e)}")
logger.warning("Using default CLF=0.5")
clf = 0.5
sensible_load = num_people * gains['sensible'] * clf
latent_load = num_people * gains['latent']
if self.debug_mode:
logger.debug(f"People load: sensible={sensible_load}, latent={latent_load}, clf={clf}")
return {
'sensible': max(sensible_load, 0.0),
'latent': max(latent_load, 0.0)
}
except Exception as e:
if self.debug_mode:
logger.error(f"Error in calculate_people_cooling_load: {str(e)}")
raise Exception(f"Error in calculate_people_cooling_load: {str(e)}")
def calculate_lights_cooling_load(
self,
power: float,
use_factor: float,
special_allowance: float,
hour: int
) -> float:
"""
Calculate cooling load from lighting.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 18, Table 18.5.
Args:
power: Total lighting power (W)
use_factor: Usage factor (0.0 to 1.0)
special_allowance: Special allowance factor
hour: Hour of the day
Returns:
Cooling load in Watts
"""
try:
hour = self.validate_hour(hour)
if self.debug_mode:
logger.debug(f"calculate_lights_cooling_load: power={power}, use_factor={use_factor}, special_allowance={special_allowance}, hour={hour}")
try:
clf = self.ashrae_tables.get_clf_lights(
zone_type='A',
hours_occupied='6h',
hour=hour
)
except Exception as e:
if self.debug_mode:
logger.error(f"get_clf_lights failed: {str(e)}")
logger.warning("Using default CLF=0.8")
clf = 0.8
load = power * use_factor * special_allowance * clf
if self.debug_mode:
logger.debug(f"Lights load: clf={clf}, load={load}")
return max(load, 0.0)
except Exception as e:
if self.debug_mode:
logger.error(f"Error in calculate_lights_cooling_load: {str(e)}")
raise Exception(f"Error in calculate_lights_cooling_load: {str(e)}")
def calculate_equipment_cooling_load(
self,
power: float,
use_factor: float,
radiation_factor: float,
hour: int
) -> Dict[str, float]:
"""
Calculate cooling load from equipment.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 18, Table 18.6.
Args:
power: Total equipment power (W)
use_factor: Usage factor (0.0 to 1.0)
radiation_factor: Radiation factor (0.0 to 1.0)
hour: Hour of the day
Returns:
Dictionary with sensible and latent loads in Watts
"""
try:
hour = self.validate_hour(hour)
if self.debug_mode:
logger.debug(f"calculate_equipment_cooling_load: power={power}, use_factor={use_factor}, radiation_factor={radiation_factor}, hour={hour}")
try:
clf = self.ashrae_tables.get_clf_equipment(
zone_type='A',
hours_operated='6h',
hour=hour
)
except Exception as e:
if self.debug_mode:
logger.error(f"get_clf_equipment failed: {str(e)}")
logger.warning("Using default CLF=0.7")
clf = 0.7
sensible_load = power * use_factor * radiation_factor * clf
latent_load = power * use_factor * (1 - radiation_factor)
if self.debug_mode:
logger.debug(f"Equipment load: sensible={sensible_load}, latent={latent_load}, clf={clf}")
return {
'sensible': max(sensible_load, 0.0),
'latent': max(latent_load, 0.0)
}
except Exception as e:
if self.debug_mode:
logger.error(f"Error in calculate_equipment_cooling_load: {str(e)}")
raise Exception(f"Error in calculate_equipment_cooling_load: {str(e)}")
def calculate_infiltration_cooling_load(
self,
flow_rate: float,
building_volume: float,
outdoor_temp: float,
outdoor_rh: float,
indoor_temp: float,
indoor_rh: float,
p_atm: float = 101325
) -> Dict[str, float]:
"""
Calculate cooling load from infiltration.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 18, Equations 18.5-18.6.
Args:
flow_rate: Infiltration flow rate (m³/s)
building_volume: Building volume (m³)
outdoor_temp: Outdoor temperature (°C)
outdoor_rh: Outdoor relative humidity (%)
indoor_temp: Indoor temperature (°C)
indoor_rh: Indoor relative humidity (%)
p_atm: Atmospheric pressure in Pa (default: 101325 Pa)
Returns:
Dictionary with sensible and latent loads in Watts
"""
try:
if self.debug_mode:
logger.debug(f"calculate_infiltration_cooling_load: flow_rate={flow_rate}, building_volume={building_volume}, outdoor_temp={outdoor_temp}, indoor_temp={indoor_temp}")
self.validate_conditions(outdoor_temp, indoor_temp, outdoor_rh, indoor_rh)
if flow_rate < 0 or building_volume <= 0:
raise ValueError("Flow rate cannot be negative and building volume must be positive")
# Calculate air changes per hour (ACH)
ach = (flow_rate * 3600) / building_volume if building_volume > 0 else 0.5
if ach < 0:
if self.debug_mode:
logger.warning(f"Invalid ACH: {ach}. Defaulting to 0.5")
ach = 0.5
# Calculate humidity ratio difference
outdoor_w = self.heat_transfer.psychrometrics.humidity_ratio(outdoor_temp, outdoor_rh, p_atm)
indoor_w = self.heat_transfer.psychrometrics.humidity_ratio(indoor_temp, indoor_rh, p_atm)
delta_w = max(0, outdoor_w - indoor_w)
# Calculate sensible and latent loads using heat_transfer methods
sensible_load = self.heat_transfer.infiltration_heat_transfer(
flow_rate, outdoor_temp - indoor_temp, indoor_temp, indoor_rh, p_atm
)
latent_load = self.heat_transfer.infiltration_latent_heat_transfer(
flow_rate, delta_w, indoor_temp, indoor_rh, p_atm
)
if self.debug_mode:
logger.debug(f"Infiltration load: sensible={sensible_load}, latent={latent_load}, ach={ach}, outdoor_w={outdoor_w}, indoor_w={indoor_w}")
return {
'sensible': max(sensible_load, 0.0),
'latent': max(latent_load, 0.0)
}
except Exception as e:
if self.debug_mode:
logger.error(f"Error in calculate_infiltration_cooling_load: {str(e)}")
raise Exception(f"Error in calculate_infiltration_cooling_load: {str(e)}")
def calculate_ventilation_cooling_load(
self,
flow_rate: float,
outdoor_temp: float,
outdoor_rh: float,
indoor_temp: float,
indoor_rh: float,
p_atm: float = 101325
) -> Dict[str, float]:
"""
Calculate cooling load from ventilation.
Reference: ASHRAE Handbook—Fundamentals (2017), Chapter 18, Equations 18.5-18.6.
Args:
flow_rate: Ventilation flow rate (m³/s)
outdoor_temp: Outdoor temperature (°C)
outdoor_rh: Outdoor relative humidity (%)
indoor_temp: Indoor temperature (°C)
indoor_rh: Indoor relative humidity (%)
p_atm: Atmospheric pressure in Pa (default: 101325 Pa)
Returns:
Dictionary with sensible and latent loads in Watts
"""
try:
if self.debug_mode:
logger.debug(f"calculate_ventilation_cooling_load: flow_rate={flow_rate}, outdoor_temp={outdoor_temp}, indoor_temp={indoor_temp}")
self.validate_conditions(outdoor_temp, indoor_temp, outdoor_rh, indoor_rh)
if flow_rate < 0:
raise ValueError("Flow rate cannot be negative")
# Calculate humidity ratio difference
outdoor_w = self.heat_transfer.psychrometrics.humidity_ratio(outdoor_temp, outdoor_rh, p_atm)
indoor_w = self.heat_transfer.psychrometrics.humidity_ratio(indoor_temp, indoor_rh, p_atm)
delta_w = max(0, outdoor_w - indoor_w)
# Calculate sensible and latent loads using heat_transfer methods
sensible_load = self.heat_transfer.infiltration_heat_transfer(
flow_rate, outdoor_temp - indoor_temp, indoor_temp, indoor_rh, p_atm
)
latent_load = self.heat_transfer.infiltration_latent_heat_transfer(
flow_rate, delta_w, indoor_temp, indoor_rh, p_atm
)
if self.debug_mode:
logger.debug(f"Ventilation load: sensible={sensible_load}, latent={latent_load}, outdoor_w={outdoor_w}, indoor_w={indoor_w}")
return {
'sensible': max(sensible_load, 0.0),
'latent': max(latent_load, 0.0)
}
except Exception as e:
if self.debug_mode:
logger.error(f"Error in calculate_ventilation_cooling_load: {str(e)}")
raise Exception(f"Error in calculate_ventilation_cooling_load: {str(e)}")
# Example usage
if __name__ == "__main__":
calculator = CoolingLoadCalculator(debug_mode=True)
# Example inputs
components = {
'walls': [Wall(id="w1", name="North Wall", area=20.0, u_value=0.5, orientation=Orientation.NORTH, wall_group='A', solar_absorptivity=0.6)],
'roofs': [Roof(id="r1", name="Main Roof", area=100.0, u_value=0.3, orientation=Orientation.HORIZONTAL, roof_group='A', solar_absorptivity=0.6)],
'windows': [Window(id="win1", name="South Window", area=10.0, u_value=2.8, orientation=Orientation.SOUTH, shgc=0.7, shading_coefficient=0.8)],
'doors': [Door(id="d1", name="Main Door", area=2.0, u_value=2.0, orientation=Orientation.NORTH)]
}
outdoor_conditions = {
'temperature': 35.0,
'relative_humidity': 60.0,
'latitude': '32N',
'month': 'JUL'
}
indoor_conditions = {
'temperature': 24.0,
'relative_humidity': 50.0
}
internal_loads = {
'people': {'number': 10, 'activity_level': 'Seated/Resting'},
'lights': {'power': 1000.0, 'use_factor': 0.8, 'special_allowance': 1.0},
'equipment': {'power': 500.0, 'use_factor': 0.7, 'radiation_factor': 0.5},
'infiltration': {'flow_rate': 0.05},
'ventilation': {'flow_rate': 0.1}
}
building_volume = 300.0
# Calculate hourly loads
hourly_loads = calculator.calculate_hourly_cooling_loads(
components, outdoor_conditions, indoor_conditions, internal_loads, building_volume
)
design_loads = calculator.calculate_design_cooling_load(hourly_loads)
summary = calculator.calculate_cooling_load_summary(design_loads)
logger.info(f"Design Cooling Load Summary: {summary}") |