File size: 4,120 Bytes
7e19f9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6573ecd
 
 
7e19f9a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
import requests
from io import BytesIO
from PIL import Image, ImageOps
import torchvision.transforms as T
import torch
import gc
import pickle as pkl
from pathlib import Path
THIS_FOLDER = Path(__file__).parent.resolve()
import datetime as dt
from transformers import AutoModel
import torch.nn as nn
import torch.nn.functional as F
import logging
logging.disable(logging.INFO)
logging.disable(logging.WARNING)

visionTransformer = AutoModel.from_pretrained(r"google/vit-base-patch16-224-in21k",
    cache_dir=None
)

class PlantVision(nn.Module):
    def __init__(self, num_classes):
        super(PlantVision, self).__init__()
        self.vit = visionTransformer
        count = 0
        for child in self.vit.children():
            count += 1
            if count < 4:
                for param in child.parameters():
                    param.requires_grad = False
        self.vitLayers = list(self.vit.children()) 
        self.vitTop = nn.Sequential(*self.vitLayers[:-2])
        self.vitNorm = list(self.vit.children())[2]
        self.vit = None
        gc.collect()
        self.vitFlatten = nn.Flatten()
        self.vitLinear = nn.Linear(151296,num_classes)
        self.fc = nn.Linear(num_classes, num_classes)

    def forward(self, input):
        output = self.vitTop(input).last_hidden_state
        output = self.vitNorm(output)
        output = self.vitFlatten(output)
        output = F.relu(self.vitLinear(output))
        output = self.fc(output)
        return output

device = 'cpu' # ('cuda' if torch.cuda.is_available else 'cpu')

with open(fr'{THIS_FOLDER}/resources/flowerLabelSet.pkl', 'rb') as f:
        flowerLabelSet = pkl.load(f)

with open(fr'{THIS_FOLDER}/resources/leafLabelSet.pkl', 'rb') as f:
        leafLabelSet = pkl.load(f)

with open(fr'{THIS_FOLDER}/resources/fruitLabelSet.pkl', 'rb') as f:
        fruitLabelSet = pkl.load(f)

def loadModel(feature, labelSet):
    model = PlantVision(num_classes=len(labelSet))
    model.vitFlatten.load_state_dict(torch.load(BytesIO(requests.get(f"https://storage.googleapis.com/bmllc-plant-model-bucket/{feature}-vitFlatten-weights.pt").content), map_location=torch.device(device)), strict=False)
    model.vitLinear.load_state_dict(torch.load(BytesIO(requests.get(f"https://storage.googleapis.com/bmllc-plant-model-bucket/{feature}-vitLinear-weights.pt").content), map_location=torch.device(device)), strict=False)
    model.fc.load_state_dict(torch.load(BytesIO(requests.get(f"https://storage.googleapis.com/bmllc-plant-model-bucket/{feature}-fc-weights.pt").content), map_location=torch.device(device)), strict=False)
    model = model.half()
    return model

start = dt.datetime.now()
flower = loadModel('flower',flowerLabelSet)
leaf = loadModel('leaf',leafLabelSet)
fruit = loadModel('fruit',fruitLabelSet)
print(dt.datetime.now() - start)

def processImage(imagePath, feature):
    with open(fr'{THIS_FOLDER}/resources/{feature}MeansAndStds.pkl', 'rb') as f:
        meansAndStds = pkl.load(f)

    img = Image.open(imagePath).convert('RGB')
    cropped = ImageOps.fit(img, (224,224), Image.Resampling.LANCZOS)

    process = T.Compose([
        T.CenterCrop(224),
        T.ToTensor(),
        T.ConvertImageDtype(torch.float32),
        T.Normalize(
       mean=meansAndStds['mean'],
       std=meansAndStds['std'])
    ])

    return process(cropped)

def see(tensor,feature,k):

        if feature=='flower':
                model = flower.float()
                labelSet = flowerLabelSet
        
        elif feature=='leaf':
                model = leaf.float()
                labelSet = leafLabelSet
        
        elif feature=='fruit':
                model = fruit.float()
                labelSet = fruitLabelSet
        
        with torch.no_grad():        
                output = model(tensor.unsqueeze(0))
                top = torch.topk(output,k,dim=1)
                predictions = top.indices[0]
        
        predictedSpecies = []
        for i in predictions:
                predictedSpecies.append(labelSet[i])
        
        model = None
        gc.collect()
        return predictedSpecies