File size: 14,830 Bytes
223d932 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 |
# ------------------------------------------------------------------------------
# OptVQ: Preventing Local Pitfalls in Vector Quantization via Optimal Transport
# Copyright (c) 2024 Borui Zhang. All Rights Reserved.
# Licensed under the MIT License [see LICENSE for details]
# ------------------------------------------------------------------------------
import time
import datetime
from typing import List
import functools
import os
from PIL import Image
from termcolor import colored
import sys
import logging
from omegaconf import OmegaConf
import json
try:
from torch.utils.tensorboard import SummaryWriter
from torch import Tensor
import torch
except:
raise ImportError("Please install torch to use this module!")
"""
NOTE: The `log` instance is a global variable, which should be imported by other modules as:
`import optvq.utils.logger as logger`
rather than
`from optvq.utils.logger import log`.
"""
def setup_printer(file_log_dir: str, use_console: bool = True):
printer = logging.getLogger("LOG")
printer.setLevel(logging.DEBUG)
printer.propagate = False
# create formatter
fmt = '[%(asctime)s %(name)s] (%(filename)s %(lineno)d): %(levelname)s %(message)s'
color_fmt = colored('[%(asctime)s %(name)s]', 'green') + \
colored('(%(filename)s %(lineno)d)', 'yellow') + ': %(levelname)s %(message)s'
# create the console handler
if use_console:
console_handler = logging.StreamHandler(sys.stdout)
console_handler.setLevel(logging.DEBUG)
console_handler.setFormatter(
logging.Formatter(fmt=color_fmt, datefmt="%Y-%m-%d %H:%M:%S")
)
printer.addHandler(console_handler)
# create the file handler
file_handler = logging.FileHandler(os.path.join(file_log_dir, "record.txt"), mode="a")
file_handler.setLevel(logging.DEBUG)
file_handler.setFormatter(
logging.Formatter(fmt=fmt, datefmt="%Y-%m-%d %H:%M:%S")
)
printer.addHandler(file_handler)
return printer
@functools.lru_cache()
def config_loggers(log_dir: str, local_rank: int = 0, master_rank: int = 0):
global log
if local_rank == master_rank:
log = LogManager(log_dir=log_dir, main_logger=True)
else:
log = LogManager(log_dir=log_dir, main_logger=False)
class ProgressWithIndices:
def __init__(self, total: int, sep_char: str = "| ",
num_per_row: int = 4):
self.total = total
self.sep_char = sep_char
self.num_per_row = num_per_row
self.count = 0
self.start_time = time.time()
self.past_time = None
self.current_time = None
self.eta = None
self.speed = None
self.used_time = 0
def update(self):
self.count += 1
if self.count <= self.total:
self.past_time = self.current_time
self.current_time = time.time()
# compute eta
if self.past_time is not None:
self.eta = (self.total - self.count) * (self.current_time - self.past_time)
self.eta = str(datetime.timedelta(seconds=int(self.eta)))
self.speed = 1 / (self.current_time - self.past_time + 1e-8)
# compute used time
self.used_time = self.current_time - self.start_time
self.used_time = str(datetime.timedelta(seconds=int(self.used_time)))
else:
self.eta = 0
self.speed = 0
self.past_time = None
self.current_time = None
def print(self, prefix: str = "", content: str = "", ):
global log
prefix_str = f"{prefix}\t" + f"[{self.count}/{self.total} {self.used_time}/Eta:{self.eta}], Speed:{self.speed}iters/s\n"
content_list = content.split(self.sep_char)
content_list = [content.strip() for content in content_list]
content_list = [
"\t\t" + self.sep_char.join(content_list[i:i + self.num_per_row])
for i in range(0, len(content_list), self.num_per_row)
]
content = prefix_str + "\n".join(content_list)
log.info(content)
class LogManager:
"""
This class encapsulates the tensorboard writer, the statistic meters, the console printer, and the progress counters.
Args:
log_dir (str): the parent directory to save all the logs
init_meters (List[str]): the initial meters to be shown
show_avg (bool): whether to show the average value of the meters
"""
def __init__(self, log_dir: str, init_meters: List[str] = [],
show_avg: bool = True, main_logger: bool = False):
# initiate all the directories
self.show_avg = show_avg
self.log_dir = log_dir
self.main_logger = main_logger
self.setup_dirs()
# initiate the statistic meters
self.meters = {meter: AverageMeter() for meter in init_meters}
# initiate the progress counters
self.total_steps = 0
self.total_epochs = 0
if self.main_logger:
# initiate the tensorboard writer
self.board = SummaryWriter(log_dir=self.tb_log_dir)
# initiate the console printer
self.printer = setup_printer(self.file_log_dir, use_console=True)
def state_dict(self):
return {
"total_steps": self.total_steps,
"total_epochs": self.total_epochs,
"meters": {
meter_name: meter.state_dict() for meter_name, meter in self.meters.items()
}
}
def load_state_dict(self, state_dict: dict):
self.total_steps = state_dict["total_steps"]
self.total_epochs = state_dict["total_epochs"]
for meter_name, meter_state_dict in state_dict["meters"].items():
if meter_name not in self.meters:
self.meters[meter_name] = AverageMeter()
self.meters[meter_name].load_state_dict(meter_state_dict)
### About directories
def setup_dirs(self):
"""
The structure of the log directory:
- log_dir: [tb_log, txt_log, img_log, model_log]
"""
self.tb_log_dir = os.path.join(self.log_dir, "tb_log")
# NOTE: For now, we save the txt records in the parent directory
# self.file_log_dir = os.path.join(self.log_dir, "txt_log")
self.file_log_dir = self.log_dir
self.img_log_dir = os.path.join(self.log_dir, "img_log")
self.config_path = os.path.join(self.log_dir, "config.yaml")
self.checkpoint_path = os.path.join(self.log_dir, "checkpoint.pth")
self.backup_checkpoint_path = os.path.join(self.log_dir, "checkpoint.pth")
self.save_logger_path = os.path.join(self.log_dir, "logger.json")
if self.main_logger:
os.makedirs(self.tb_log_dir, exist_ok=True)
os.makedirs(self.file_log_dir, exist_ok=True)
os.makedirs(self.img_log_dir, exist_ok=True)
### About printer
def info(self, msg, *args, **kwargs):
if self.main_logger:
self.printer.info(msg, *args, **kwargs)
def show(self, include_key: str = ""):
if isinstance(include_key, str):
include_key = [include_key]
if self.show_avg:
return "| ".join([f"{meter_name}: {meter.val:.4f}/{meter.avg:.4f}" for meter_name, meter in self.meters.items() if any([k in meter_name for k in include_key])])
else:
return "| ".join([f"{meter_name}: {meter.val:.4f}" for meter_name, meter in self.meters.items() if any([k in meter_name for k in include_key])])
### About counter
def update_steps(self):
self.total_steps += 1
return self.total_steps
def update_epochs(self):
self.total_epochs += 1
return self.total_epochs
### About tensorboard
def add_histogram(self, tag: str, values: Tensor, global_step: int = None):
if self.main_logger:
global_step = self.total_steps if global_step is None else global_step
self.board.add_histogram(tag, values, global_step)
def add_scalar(self, tag: str, scalar_value: float, global_step: int = None):
if isinstance(scalar_value, Tensor):
scalar_value = scalar_value.item()
if tag in self.meters:
cur_step = self.meters[tag].update(scalar_value)
cur_step = cur_step if global_step is None else global_step
if self.main_logger:
self.board.add_scalar(tag, scalar_value, cur_step)
else:
self.meters[tag] = AverageMeter()
cur_step = self.meters[tag].update(scalar_value)
cur_step = cur_step if global_step is None else global_step
if self.main_logger:
print(f"Create new meter: {tag}!")
self.board.add_scalar(tag, scalar_value, cur_step)
def add_scalar_dict(self, scalar_dict: dict, global_step: int = None):
for tag, scalar_value in scalar_dict.items():
self.add_scalar(tag, scalar_value, global_step)
def add_images(self, tag: str, images: Tensor, global_step: int = None):
if self.main_logger:
global_step = self.total_steps if global_step is None else global_step
self.board.add_images(tag, images, global_step, dataformats="NCHW")
### About saving and resuming
def save_configs(self, config):
if self.main_logger:
# save config as yaml file
OmegaConf.save(config, self.config_path)
self.info(f"Save config to {self.config_path}.")
# save logger
state_dict = self.state_dict()
with open(self.save_logger_path, "w") as f:
json.dump(state_dict, f)
def load_configs(self):
# load config
assert os.path.exists(self.config_path), f"Config {self.config_path} does not exist!"
config = OmegaConf.load(self.config_path)
# load logger
assert os.path.exists(self.save_logger_path), f"Logger {self.save_logger_path} does not exist!"
state_dict = json.load(open(self.save_logger_path, "r"))
self.load_state_dict(state_dict)
return config
def save_checkpoint(self, model, optimizers, schedulers, scalers, suffix: str = ""):
"""
checkpoint_dict: model, optimizer, scheduler, scalers
"""
if self.main_logger:
# save checkpoint_dict
checkpoint_dict = {
"model": model.state_dict(),
"epoch": self.total_epochs,
"step": self.total_steps
}
checkpoint_dict.update({k: v.state_dict() for k, v in optimizers.items()})
checkpoint_dict.update({k: v.state_dict() for k, v in schedulers.items() if v is not None})
checkpoint_dict.update({k: v.state_dict() for k, v in scalers.items()})
checkpoint_path = self.checkpoint_path + suffix
torch.save(checkpoint_dict, checkpoint_path)
if os.path.exists(self.backup_checkpoint_path):
os.remove(self.backup_checkpoint_path)
self.backup_checkpoint_path = checkpoint_path + f".epoch{self.total_epochs}"
torch.save(checkpoint_dict, self.backup_checkpoint_path)
self.info(f"### Epoch: {self.total_epochs}| Steps: {self.total_steps}| Save checkpoint to {checkpoint_path}.")
def load_checkpoint(self, device, model, optimizers, schedulers, scalers, resume: str = None):
resume_path = self.checkpoint_path if resume is None else resume
assert os.path.exists(resume_path), f"Resume {resume_path} does not exist!"
# load checkpoint_dict
checkpoint_dict = torch.load(resume_path, map_location=device)
model.load_state_dict(checkpoint_dict["model"])
self.total_epochs = checkpoint_dict["epoch"]
self.total_steps = checkpoint_dict["step"]
for k, v in optimizers.items():
v.load_state_dict(checkpoint_dict[k])
for k, v in schedulers.items():
v.load_state_dict(checkpoint_dict[k])
for k, v in scalers.items():
v.load_state_dict(checkpoint_dict[k])
self.info(f"### Epoch: {self.total_epochs}| Steps: {self.total_steps}| Resume checkpoint from {resume_path}.")
return self.total_epochs
class EmptyManager:
def __init__(self):
for func_name in LogManager.__dict__.keys():
if not func_name.startswith("_"):
setattr(self, func_name, lambda *args, **kwargs: print(f"Empty Manager! {func_name} is not available!"))
class AverageMeter:
def __init__(self):
self.reset()
def state_dict(self):
return {
"val": self.val,
"avg": self.avg,
"sum": self.sum,
"count": self.count,
}
def load_state_dict(self, state_dict: dict):
self.val = state_dict["val"]
self.avg = state_dict["avg"]
self.sum = state_dict["sum"]
self.count = state_dict["count"]
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
return 0
def update(self, val: float, n: int = 1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
return self.count
def __str__(self):
return f"{self.avg:.4f}"
def save_image(x: Tensor, save_path: str, scale_to_256: bool = True):
"""
Args:
x (tensor): default data range is [0, 1]
"""
if scale_to_256:
x = x.mul(255).clamp(0, 255)
x = x.permute(1, 2, 0).detach().cpu().numpy().astype("uint8")
img = Image.fromarray(x)
img.save(save_path)
def save_images(images_list, ids_list, meta_path):
for i, (image, id) in enumerate(zip(images_list, ids_list)):
save_path = os.path.join(meta_path, f"{id}.png")
save_image(image, save_path)
def save_images_multithread(images_list, ids_list, meta_path):
n_workers = 32
from concurrent.futures import ThreadPoolExecutor
with ThreadPoolExecutor(max_workers=n_workers) as executor:
for i in range(0, len(images_list), n_workers):
cur_images = images_list[i:(i + n_workers)]
cur_ids = ids_list[i:(i + n_workers)]
executor.submit(save_images, cur_images, cur_ids, meta_path)
def add_prefix(log_dict: dict, prefix: str):
return {
f"{prefix}/{key}": val for key, val in log_dict.items()
}
##################### GLOBAL VARIABLES #####################
log = EmptyManager()
GET_STATS: bool = (os.environ.get("ENABLE_STATS", "1") == "1")
########################################################### |