File size: 17,775 Bytes
92c1c00
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
from functools import wraps

import huggingface_hub
import pytest
import torch
from safetensors.torch import load_file
from transformers import AutoModelForCausalLM, AutoTokenizer

from peft import LoraConfig, PeftType, TaskType, XLoraConfig, get_peft_model
from peft.peft_model import PeftModel
from peft.tuners.xlora.layer import XLoraLayer
from peft.utils import infer_device


def flaky(num_tries: int):
    """Decorator for test functions that are flaky"""

    def decorator(func):
        @wraps(func)
        def wrapper(*args, **kwargs):
            for _ in range(num_tries):
                try:
                    return func(*args, **kwargs)
                except AssertionError as e:
                    print(f"Failed test {func.__name__} with error: {e}")
                    continue
            raise AssertionError(f"Failed test {func.__name__} after {num_tries} tries")

        return wrapper

    return decorator


class TestXlora:
    torch_device = infer_device()

    model_id = "facebook/opt-125m"
    num_loras = 4

    @pytest.fixture(scope="class")
    def lora_dir(self, tmp_path_factory):
        return tmp_path_factory.mktemp("lora")

    @pytest.fixture(scope="class")
    def lora_embedding_dir(self, tmp_path_factory):
        return tmp_path_factory.mktemp("lora_embedding")

    @pytest.fixture(scope="class")
    def saved_lora_adapters(self, lora_dir):
        file_names = []

        lora_configs = [
            LoraConfig(task_type="CAUSAL_LM", target_modules=["q_proj", "v_proj"], init_lora_weights=False)
            for _ in range(self.num_loras)
        ]
        # have 1 LoRA with different target modules
        lora_configs[-1] = LoraConfig(
            task_type="CAUSAL_LM", target_modules=["k_proj", "q_proj", "v_proj"], init_lora_weights=False
        )

        for i, lora_config in enumerate(lora_configs, start=1):
            torch.manual_seed(i)
            model = AutoModelForCausalLM.from_pretrained(self.model_id)
            peft_model = get_peft_model(model, lora_config)
            file_name = os.path.join(lora_dir, f"checkpoint-{i}")
            peft_model.save_pretrained(file_name)
            file_names.append(file_name)
        return file_names

    @pytest.fixture(scope="class")
    def saved_lora_embedding_adapters(self, lora_embedding_dir):
        file_names = []
        for i in range(1, self.num_loras + 1):
            torch.manual_seed(i)
            lora_config = LoraConfig(task_type="CAUSAL_LM", init_lora_weights=False, target_modules=["embed_tokens"])
            model = AutoModelForCausalLM.from_pretrained(self.model_id)
            peft_model = get_peft_model(model, lora_config)
            file_name = os.path.join(lora_embedding_dir, f"checkpoint-{i}")
            peft_model.save_pretrained(file_name)
            file_names.append(file_name)
        return file_names

    @pytest.fixture(scope="class")
    def tokenizer(self):
        tokenizer = AutoTokenizer.from_pretrained(self.model_id, trust_remote_code=True, device_map=self.torch_device)
        return tokenizer

    @pytest.fixture(scope="function")
    def embedding_model(self, saved_lora_embedding_adapters):
        model = AutoModelForCausalLM.from_pretrained(self.model_id)
        model.config.use_cache = False
        adapters = {str(i): file_name for i, file_name in enumerate(saved_lora_embedding_adapters)}

        peft_config = XLoraConfig(
            task_type=TaskType.CAUSAL_LM,
            peft_type=PeftType.XLORA,
            hidden_size=model.config.hidden_size,
            xlora_depth=8,
            adapters=adapters,
        )
        model = get_peft_model(model, peft_config).to(self.torch_device)
        return model

    @pytest.fixture(scope="function")
    def model(self, saved_lora_adapters):
        model = AutoModelForCausalLM.from_pretrained(self.model_id)
        model.config.use_cache = False
        adapters = {str(i): file_name for i, file_name in enumerate(saved_lora_adapters)}

        peft_config = XLoraConfig(
            task_type=TaskType.CAUSAL_LM,
            peft_type=PeftType.XLORA,
            hidden_size=model.config.hidden_size,
            xlora_depth=8,
            adapters=adapters,
        )
        model = get_peft_model(model, peft_config).to(self.torch_device)
        return model

    @pytest.fixture(scope="function")
    def model_layerwise(self, saved_lora_adapters):
        model = AutoModelForCausalLM.from_pretrained(self.model_id)
        model.config.use_cache = False
        adapters = {str(i): file_name for i, file_name in enumerate(saved_lora_adapters)}

        peft_config = XLoraConfig(
            task_type=TaskType.CAUSAL_LM,
            peft_type=PeftType.XLORA,
            hidden_size=model.config.hidden_size,
            xlora_depth=8,
            adapters=adapters,
            layerwise_scalings=True,
        )
        model = get_peft_model(model, peft_config).to(self.torch_device)
        return model

    def test_functional(self, tokenizer, model):
        model.enable_scalings_logging()
        inputs = tokenizer.encode("Python is a", add_special_tokens=False, return_tensors="pt")
        outputs = model.generate(
            input_ids=inputs.to(self.torch_device),
            max_new_tokens=32,
        )
        assert torch.isfinite(outputs[: inputs.shape[1] :]).all()

    def test_forward_hooks_are_cleaned_up(self, tokenizer, model):
        # There was an issue that forward hooks would accumulate during generation, since one hook per forward step was
        # being registered and generate would call forward multiple times. This is already undesirable, but to make it
        # worse, only the last hook was removed, resulting in hooks accumulating.
        # See https://github.com/huggingface/peft/issues/1472#issuecomment-3235817807
        inputs = tokenizer.encode("Python is a", add_special_tokens=False, return_tensors="pt")
        model.generate(input_ids=inputs.to(self.torch_device), max_new_tokens=10)
        num_hooks_gen1 = len(model.base_model.model.model.decoder.layers[0].self_attn.k_proj._forward_pre_hooks)

        model.generate(input_ids=inputs.to(self.torch_device), max_new_tokens=10)
        num_hooks_gen2 = len(model.base_model.model.model.decoder.layers[0].self_attn.k_proj._forward_pre_hooks)
        assert num_hooks_gen1 == num_hooks_gen2 == 0

    def test_scalings_logging_methods(self, tokenizer, model):
        model.enable_scalings_logging()

        inputs = tokenizer.encode("Python is a", add_special_tokens=False, return_tensors="pt")
        outputs = model.generate(
            input_ids=inputs.to(self.torch_device),
            max_new_tokens=32,
        )
        assert torch.isfinite(outputs[: inputs.shape[1] :]).all()

        _ = model.get_latest_scalings()
        # 32 is the numeber of max scalings. 3 is the number of prompt tokens.
        assert 32 + 3 >= len(model.get_scalings_log()) > 0

        model.disable_scalings_logging()

        inputs = tokenizer.encode("Python is a", add_special_tokens=False, return_tensors="pt")
        outputs = model.generate(
            input_ids=inputs.to(self.torch_device),
            max_new_tokens=32,
        )
        assert torch.isfinite(outputs[: inputs.shape[1] :]).all()

        assert 32 >= len(model.get_scalings_log()) > 0

        bucketed = model.get_bucketed_scalings_log()
        keys = bucketed.keys()
        # Once bucket for each token as we aren't using cache
        assert len(bucketed) == 32 == len(keys)
        seq_len = inputs.shape[1]
        for key in keys:
            assert len(bucketed[key][0]) == 1
            assert len(bucketed[key][1]) == 1
            assert bucketed[key][0][0] == key - seq_len

        model.clear_scalings_log()
        assert len(model.get_scalings_log()) == 0

    def test_misc_methods(self, tokenizer, model):
        model.set_global_scaling_weight(1.5)
        assert model.internal_xlora_classifier.config.global_scaling_weight == 1.5
        assert model.get_global_scaling_weight() == 1.5

        inputs = tokenizer.encode("Python is a", add_special_tokens=False, return_tensors="pt")
        outputs = model.generate(
            input_ids=inputs.to(self.torch_device),
            max_new_tokens=32,
        )
        assert torch.isfinite(outputs[: inputs.shape[1] :]).all()

        assert str(model) is not None

    # On CI (but not locally), this test is flaky since transformers v4.45.0.
    @flaky(num_tries=5)
    def test_save_load_functional(self, tokenizer, model, tmp_path):
        inputs = tokenizer.encode("Python is a", add_special_tokens=False, return_tensors="pt")
        outputs = model.generate(
            input_ids=inputs.to(self.torch_device),
            max_new_tokens=32,
        )
        before_logits = outputs[: inputs.shape[1] :]
        assert torch.isfinite(before_logits).all()

        model.save_pretrained(save_directory=tmp_path)

        del model

        model = AutoModelForCausalLM.from_pretrained(self.model_id)
        model.config.use_cache = False
        model = PeftModel.from_pretrained(model=model, model_id=tmp_path).to(self.torch_device)

        inputs = tokenizer.encode("Python is a", add_special_tokens=False, return_tensors="pt")
        outputs = model.generate(
            input_ids=inputs.to(self.torch_device),
            max_new_tokens=32,
        )
        after_logits = outputs[: inputs.shape[1] :]
        assert torch.isfinite(after_logits).all()
        assert torch.equal(after_logits, before_logits)

    def test_save_load_functional_pt(self, tokenizer, model, tmp_path):
        inputs = tokenizer.encode("Python is a", add_special_tokens=False, return_tensors="pt")
        outputs = model.generate(
            input_ids=inputs.to(self.torch_device),
            max_new_tokens=32,
        )
        before_logits = outputs[: inputs.shape[1] :]
        assert torch.isfinite(before_logits).all()

        model.save_pretrained(save_directory=tmp_path, safe_serialization=False)

        del model

        model = AutoModelForCausalLM.from_pretrained(self.model_id)
        model.config.use_cache = False
        model = PeftModel.from_pretrained(model=model, model_id=tmp_path, safe_serialization=False).to(
            self.torch_device
        )

        inputs = tokenizer.encode("Python is a", add_special_tokens=False, return_tensors="pt")
        outputs = model.generate(
            input_ids=inputs.to(self.torch_device),
            max_new_tokens=32,
        )
        after_logits = outputs[: inputs.shape[1] :]
        assert torch.isfinite(after_logits).all()
        assert torch.equal(after_logits, before_logits), (after_logits, before_logits)

    def test_topk_lora(self, tokenizer, model):
        model.set_topk_lora(2)
        assert model.internal_xlora_classifier.config.top_k_lora == 2

        inputs = tokenizer.encode("Python is a", add_special_tokens=False, return_tensors="pt")
        outputs = model.generate(
            input_ids=inputs.to(self.torch_device),
            max_new_tokens=32,
        )
        assert torch.isfinite(outputs[: inputs.shape[1] :]).all()

    def test_softmax_topk(self, tokenizer, model):
        # Just reach in to set the config
        model.internal_xlora_classifier.config.top_k_lora = 2
        model.internal_xlora_classifier.config.enable_softmax = False
        model.internal_xlora_classifier.config.enable_softmax_topk = True

        inputs = tokenizer.encode("Python is a", add_special_tokens=False, return_tensors="pt")
        outputs = model.generate(
            input_ids=inputs.to(self.torch_device),
            max_new_tokens=32,
        )
        assert torch.isfinite(outputs[: inputs.shape[1] :]).all()

    def test_set_override_scaling_pass_value(self, model):
        # Defaults to 0
        assert model.internal_xlora_classifier.override_scaling_pass_value == 0.0

        # Set it to 2 and make sure it actually is
        model.set_scaling_pass_value(2)
        assert model.internal_xlora_classifier.override_scaling_pass_value == 2
        assert model.internal_xlora_classifier.config.scaling_pass_value == 2

        # Set it to None and make sure it is 1/n
        model.set_scaling_pass_value(None)
        assert model.internal_xlora_classifier.override_scaling_pass_value == 1 / self.num_loras
        assert model.internal_xlora_classifier.config.scaling_pass_value == 1 / self.num_loras

    def test_functional_layerwise(self, tokenizer, model_layerwise):
        model_layerwise.enable_scalings_logging()
        inputs = tokenizer.encode("Python is a", add_special_tokens=False, return_tensors="pt")
        outputs = model_layerwise.generate(
            input_ids=inputs.to(self.torch_device),
            max_new_tokens=32,
        )
        assert torch.isfinite(outputs[: inputs.shape[1] :]).all()

    def test_disable_adapter(self, tokenizer, model):
        model.enable_scalings_logging()
        inputs = tokenizer.encode("Python is a", add_special_tokens=False, return_tensors="pt")
        with model.disable_adapter():
            outputs_disabled = model.generate(
                input_ids=inputs.to(self.torch_device),
                max_new_tokens=32,
            )
        outputs = model.generate(
            input_ids=inputs.to(self.torch_device),
            max_new_tokens=32,
        )
        assert torch.isfinite(outputs_disabled[: inputs.shape[1] :]).all()
        assert torch.isfinite(outputs[: inputs.shape[1] :]).all()
        assert not torch.equal(outputs, outputs_disabled)

    def test_functional_embedding(self, tokenizer, embedding_model):
        inputs = tokenizer.encode("Python is a", add_special_tokens=False, return_tensors="pt")
        outputs = embedding_model.generate(
            input_ids=inputs.to(self.torch_device),
            max_new_tokens=32,
        )
        assert torch.isfinite(outputs[: inputs.shape[1] :]).all()

    def test_xlora_loading_valid(self):
        # This test also simulatenously tests the loading-from-hub functionality!
        torch.manual_seed(123)

        model_id = "facebook/opt-125m"
        model = AutoModelForCausalLM.from_pretrained(model_id)
        model.config.use_cache = False

        adapters = [
            "peft-internal-testing/opt-125m-dummy-lora",
            "peft-internal-testing/opt-125m-dummy-lora",
        ]
        adapters = {str(i): file_name for i, file_name in enumerate(adapters)}

        peft_config = XLoraConfig(
            task_type=TaskType.CAUSAL_LM,
            peft_type=PeftType.XLORA,
            hidden_size=model.config.hidden_size,
            adapters=adapters,
            xlora_depth=8,
            xlora_size=2048,
            layerwise_scalings=True,
            xlora_dropout_p=0.2,
        )
        model = get_peft_model(model, peft_config)

        downloaded = huggingface_hub.hf_hub_download(repo_id=adapters["0"], filename="adapter_model.safetensors")
        sd = load_file(downloaded)
        w0 = model.base_model.model.model.decoder.layers[0].self_attn.q_proj.lora_A["0"].weight
        w1 = sd["base_model.model.model.decoder.layers.0.self_attn.q_proj.lora_A.weight"]

        assert torch.allclose(w0, w1)

    def test_scalings_storage(self, tokenizer, model):
        model.enable_scalings_logging()
        inputs = tokenizer.encode("Python is a", add_special_tokens=False, return_tensors="pt")
        outputs = model.generate(
            input_ids=inputs.to(self.torch_device),
            max_new_tokens=10,
        )

        latest_scalings = model.get_latest_scalings()
        assert latest_scalings is not None, "get_latest_scalings() should not return None after generation"
        assert isinstance(latest_scalings, torch.Tensor)
        assert torch.isfinite(latest_scalings).all(), "Scalings should contain finite values"

    def test_per_token_normalization_with_softmax_topk(self, tokenizer, model, monkeypatch):
        model.internal_xlora_classifier.config.top_k_lora = 2
        model.internal_xlora_classifier.config.enable_softmax = False
        model.internal_xlora_classifier.config.enable_softmax_topk = True

        captured_data = []
        orig_get_maybe_topk_scalings = XLoraLayer.get_maybe_topk_scalings

        def mock_get_maybe_topk_scalings(self, scalings):
            result = orig_get_maybe_topk_scalings(self, scalings)
            if getattr(model, "internal_xlora_scalings", None) is not None:
                captured_data.append(result)
            return result

        monkeypatch.setattr(XLoraLayer, "get_maybe_topk_scalings", mock_get_maybe_topk_scalings)

        model.enable_scalings_logging()
        inputs = tokenizer.encode("Test per token normalization", add_special_tokens=False, return_tensors="pt")
        outputs = model.generate(
            input_ids=inputs.to(self.torch_device),
            max_new_tokens=1,
        )

        for scaling in captured_data:
            weight_sums = scaling.sum(dim=-1)
            assert torch.allclose(weight_sums, torch.ones_like(weight_sums), atol=1e-5), (
                "Per-token scaling weights are not normalized to sum to 1."
            )