Spaces:
Sleeping
Sleeping
File size: 17,775 Bytes
92c1c00 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 |
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from functools import wraps
import huggingface_hub
import pytest
import torch
from safetensors.torch import load_file
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import LoraConfig, PeftType, TaskType, XLoraConfig, get_peft_model
from peft.peft_model import PeftModel
from peft.tuners.xlora.layer import XLoraLayer
from peft.utils import infer_device
def flaky(num_tries: int):
"""Decorator for test functions that are flaky"""
def decorator(func):
@wraps(func)
def wrapper(*args, **kwargs):
for _ in range(num_tries):
try:
return func(*args, **kwargs)
except AssertionError as e:
print(f"Failed test {func.__name__} with error: {e}")
continue
raise AssertionError(f"Failed test {func.__name__} after {num_tries} tries")
return wrapper
return decorator
class TestXlora:
torch_device = infer_device()
model_id = "facebook/opt-125m"
num_loras = 4
@pytest.fixture(scope="class")
def lora_dir(self, tmp_path_factory):
return tmp_path_factory.mktemp("lora")
@pytest.fixture(scope="class")
def lora_embedding_dir(self, tmp_path_factory):
return tmp_path_factory.mktemp("lora_embedding")
@pytest.fixture(scope="class")
def saved_lora_adapters(self, lora_dir):
file_names = []
lora_configs = [
LoraConfig(task_type="CAUSAL_LM", target_modules=["q_proj", "v_proj"], init_lora_weights=False)
for _ in range(self.num_loras)
]
# have 1 LoRA with different target modules
lora_configs[-1] = LoraConfig(
task_type="CAUSAL_LM", target_modules=["k_proj", "q_proj", "v_proj"], init_lora_weights=False
)
for i, lora_config in enumerate(lora_configs, start=1):
torch.manual_seed(i)
model = AutoModelForCausalLM.from_pretrained(self.model_id)
peft_model = get_peft_model(model, lora_config)
file_name = os.path.join(lora_dir, f"checkpoint-{i}")
peft_model.save_pretrained(file_name)
file_names.append(file_name)
return file_names
@pytest.fixture(scope="class")
def saved_lora_embedding_adapters(self, lora_embedding_dir):
file_names = []
for i in range(1, self.num_loras + 1):
torch.manual_seed(i)
lora_config = LoraConfig(task_type="CAUSAL_LM", init_lora_weights=False, target_modules=["embed_tokens"])
model = AutoModelForCausalLM.from_pretrained(self.model_id)
peft_model = get_peft_model(model, lora_config)
file_name = os.path.join(lora_embedding_dir, f"checkpoint-{i}")
peft_model.save_pretrained(file_name)
file_names.append(file_name)
return file_names
@pytest.fixture(scope="class")
def tokenizer(self):
tokenizer = AutoTokenizer.from_pretrained(self.model_id, trust_remote_code=True, device_map=self.torch_device)
return tokenizer
@pytest.fixture(scope="function")
def embedding_model(self, saved_lora_embedding_adapters):
model = AutoModelForCausalLM.from_pretrained(self.model_id)
model.config.use_cache = False
adapters = {str(i): file_name for i, file_name in enumerate(saved_lora_embedding_adapters)}
peft_config = XLoraConfig(
task_type=TaskType.CAUSAL_LM,
peft_type=PeftType.XLORA,
hidden_size=model.config.hidden_size,
xlora_depth=8,
adapters=adapters,
)
model = get_peft_model(model, peft_config).to(self.torch_device)
return model
@pytest.fixture(scope="function")
def model(self, saved_lora_adapters):
model = AutoModelForCausalLM.from_pretrained(self.model_id)
model.config.use_cache = False
adapters = {str(i): file_name for i, file_name in enumerate(saved_lora_adapters)}
peft_config = XLoraConfig(
task_type=TaskType.CAUSAL_LM,
peft_type=PeftType.XLORA,
hidden_size=model.config.hidden_size,
xlora_depth=8,
adapters=adapters,
)
model = get_peft_model(model, peft_config).to(self.torch_device)
return model
@pytest.fixture(scope="function")
def model_layerwise(self, saved_lora_adapters):
model = AutoModelForCausalLM.from_pretrained(self.model_id)
model.config.use_cache = False
adapters = {str(i): file_name for i, file_name in enumerate(saved_lora_adapters)}
peft_config = XLoraConfig(
task_type=TaskType.CAUSAL_LM,
peft_type=PeftType.XLORA,
hidden_size=model.config.hidden_size,
xlora_depth=8,
adapters=adapters,
layerwise_scalings=True,
)
model = get_peft_model(model, peft_config).to(self.torch_device)
return model
def test_functional(self, tokenizer, model):
model.enable_scalings_logging()
inputs = tokenizer.encode("Python is a", add_special_tokens=False, return_tensors="pt")
outputs = model.generate(
input_ids=inputs.to(self.torch_device),
max_new_tokens=32,
)
assert torch.isfinite(outputs[: inputs.shape[1] :]).all()
def test_forward_hooks_are_cleaned_up(self, tokenizer, model):
# There was an issue that forward hooks would accumulate during generation, since one hook per forward step was
# being registered and generate would call forward multiple times. This is already undesirable, but to make it
# worse, only the last hook was removed, resulting in hooks accumulating.
# See https://github.com/huggingface/peft/issues/1472#issuecomment-3235817807
inputs = tokenizer.encode("Python is a", add_special_tokens=False, return_tensors="pt")
model.generate(input_ids=inputs.to(self.torch_device), max_new_tokens=10)
num_hooks_gen1 = len(model.base_model.model.model.decoder.layers[0].self_attn.k_proj._forward_pre_hooks)
model.generate(input_ids=inputs.to(self.torch_device), max_new_tokens=10)
num_hooks_gen2 = len(model.base_model.model.model.decoder.layers[0].self_attn.k_proj._forward_pre_hooks)
assert num_hooks_gen1 == num_hooks_gen2 == 0
def test_scalings_logging_methods(self, tokenizer, model):
model.enable_scalings_logging()
inputs = tokenizer.encode("Python is a", add_special_tokens=False, return_tensors="pt")
outputs = model.generate(
input_ids=inputs.to(self.torch_device),
max_new_tokens=32,
)
assert torch.isfinite(outputs[: inputs.shape[1] :]).all()
_ = model.get_latest_scalings()
# 32 is the numeber of max scalings. 3 is the number of prompt tokens.
assert 32 + 3 >= len(model.get_scalings_log()) > 0
model.disable_scalings_logging()
inputs = tokenizer.encode("Python is a", add_special_tokens=False, return_tensors="pt")
outputs = model.generate(
input_ids=inputs.to(self.torch_device),
max_new_tokens=32,
)
assert torch.isfinite(outputs[: inputs.shape[1] :]).all()
assert 32 >= len(model.get_scalings_log()) > 0
bucketed = model.get_bucketed_scalings_log()
keys = bucketed.keys()
# Once bucket for each token as we aren't using cache
assert len(bucketed) == 32 == len(keys)
seq_len = inputs.shape[1]
for key in keys:
assert len(bucketed[key][0]) == 1
assert len(bucketed[key][1]) == 1
assert bucketed[key][0][0] == key - seq_len
model.clear_scalings_log()
assert len(model.get_scalings_log()) == 0
def test_misc_methods(self, tokenizer, model):
model.set_global_scaling_weight(1.5)
assert model.internal_xlora_classifier.config.global_scaling_weight == 1.5
assert model.get_global_scaling_weight() == 1.5
inputs = tokenizer.encode("Python is a", add_special_tokens=False, return_tensors="pt")
outputs = model.generate(
input_ids=inputs.to(self.torch_device),
max_new_tokens=32,
)
assert torch.isfinite(outputs[: inputs.shape[1] :]).all()
assert str(model) is not None
# On CI (but not locally), this test is flaky since transformers v4.45.0.
@flaky(num_tries=5)
def test_save_load_functional(self, tokenizer, model, tmp_path):
inputs = tokenizer.encode("Python is a", add_special_tokens=False, return_tensors="pt")
outputs = model.generate(
input_ids=inputs.to(self.torch_device),
max_new_tokens=32,
)
before_logits = outputs[: inputs.shape[1] :]
assert torch.isfinite(before_logits).all()
model.save_pretrained(save_directory=tmp_path)
del model
model = AutoModelForCausalLM.from_pretrained(self.model_id)
model.config.use_cache = False
model = PeftModel.from_pretrained(model=model, model_id=tmp_path).to(self.torch_device)
inputs = tokenizer.encode("Python is a", add_special_tokens=False, return_tensors="pt")
outputs = model.generate(
input_ids=inputs.to(self.torch_device),
max_new_tokens=32,
)
after_logits = outputs[: inputs.shape[1] :]
assert torch.isfinite(after_logits).all()
assert torch.equal(after_logits, before_logits)
def test_save_load_functional_pt(self, tokenizer, model, tmp_path):
inputs = tokenizer.encode("Python is a", add_special_tokens=False, return_tensors="pt")
outputs = model.generate(
input_ids=inputs.to(self.torch_device),
max_new_tokens=32,
)
before_logits = outputs[: inputs.shape[1] :]
assert torch.isfinite(before_logits).all()
model.save_pretrained(save_directory=tmp_path, safe_serialization=False)
del model
model = AutoModelForCausalLM.from_pretrained(self.model_id)
model.config.use_cache = False
model = PeftModel.from_pretrained(model=model, model_id=tmp_path, safe_serialization=False).to(
self.torch_device
)
inputs = tokenizer.encode("Python is a", add_special_tokens=False, return_tensors="pt")
outputs = model.generate(
input_ids=inputs.to(self.torch_device),
max_new_tokens=32,
)
after_logits = outputs[: inputs.shape[1] :]
assert torch.isfinite(after_logits).all()
assert torch.equal(after_logits, before_logits), (after_logits, before_logits)
def test_topk_lora(self, tokenizer, model):
model.set_topk_lora(2)
assert model.internal_xlora_classifier.config.top_k_lora == 2
inputs = tokenizer.encode("Python is a", add_special_tokens=False, return_tensors="pt")
outputs = model.generate(
input_ids=inputs.to(self.torch_device),
max_new_tokens=32,
)
assert torch.isfinite(outputs[: inputs.shape[1] :]).all()
def test_softmax_topk(self, tokenizer, model):
# Just reach in to set the config
model.internal_xlora_classifier.config.top_k_lora = 2
model.internal_xlora_classifier.config.enable_softmax = False
model.internal_xlora_classifier.config.enable_softmax_topk = True
inputs = tokenizer.encode("Python is a", add_special_tokens=False, return_tensors="pt")
outputs = model.generate(
input_ids=inputs.to(self.torch_device),
max_new_tokens=32,
)
assert torch.isfinite(outputs[: inputs.shape[1] :]).all()
def test_set_override_scaling_pass_value(self, model):
# Defaults to 0
assert model.internal_xlora_classifier.override_scaling_pass_value == 0.0
# Set it to 2 and make sure it actually is
model.set_scaling_pass_value(2)
assert model.internal_xlora_classifier.override_scaling_pass_value == 2
assert model.internal_xlora_classifier.config.scaling_pass_value == 2
# Set it to None and make sure it is 1/n
model.set_scaling_pass_value(None)
assert model.internal_xlora_classifier.override_scaling_pass_value == 1 / self.num_loras
assert model.internal_xlora_classifier.config.scaling_pass_value == 1 / self.num_loras
def test_functional_layerwise(self, tokenizer, model_layerwise):
model_layerwise.enable_scalings_logging()
inputs = tokenizer.encode("Python is a", add_special_tokens=False, return_tensors="pt")
outputs = model_layerwise.generate(
input_ids=inputs.to(self.torch_device),
max_new_tokens=32,
)
assert torch.isfinite(outputs[: inputs.shape[1] :]).all()
def test_disable_adapter(self, tokenizer, model):
model.enable_scalings_logging()
inputs = tokenizer.encode("Python is a", add_special_tokens=False, return_tensors="pt")
with model.disable_adapter():
outputs_disabled = model.generate(
input_ids=inputs.to(self.torch_device),
max_new_tokens=32,
)
outputs = model.generate(
input_ids=inputs.to(self.torch_device),
max_new_tokens=32,
)
assert torch.isfinite(outputs_disabled[: inputs.shape[1] :]).all()
assert torch.isfinite(outputs[: inputs.shape[1] :]).all()
assert not torch.equal(outputs, outputs_disabled)
def test_functional_embedding(self, tokenizer, embedding_model):
inputs = tokenizer.encode("Python is a", add_special_tokens=False, return_tensors="pt")
outputs = embedding_model.generate(
input_ids=inputs.to(self.torch_device),
max_new_tokens=32,
)
assert torch.isfinite(outputs[: inputs.shape[1] :]).all()
def test_xlora_loading_valid(self):
# This test also simulatenously tests the loading-from-hub functionality!
torch.manual_seed(123)
model_id = "facebook/opt-125m"
model = AutoModelForCausalLM.from_pretrained(model_id)
model.config.use_cache = False
adapters = [
"peft-internal-testing/opt-125m-dummy-lora",
"peft-internal-testing/opt-125m-dummy-lora",
]
adapters = {str(i): file_name for i, file_name in enumerate(adapters)}
peft_config = XLoraConfig(
task_type=TaskType.CAUSAL_LM,
peft_type=PeftType.XLORA,
hidden_size=model.config.hidden_size,
adapters=adapters,
xlora_depth=8,
xlora_size=2048,
layerwise_scalings=True,
xlora_dropout_p=0.2,
)
model = get_peft_model(model, peft_config)
downloaded = huggingface_hub.hf_hub_download(repo_id=adapters["0"], filename="adapter_model.safetensors")
sd = load_file(downloaded)
w0 = model.base_model.model.model.decoder.layers[0].self_attn.q_proj.lora_A["0"].weight
w1 = sd["base_model.model.model.decoder.layers.0.self_attn.q_proj.lora_A.weight"]
assert torch.allclose(w0, w1)
def test_scalings_storage(self, tokenizer, model):
model.enable_scalings_logging()
inputs = tokenizer.encode("Python is a", add_special_tokens=False, return_tensors="pt")
outputs = model.generate(
input_ids=inputs.to(self.torch_device),
max_new_tokens=10,
)
latest_scalings = model.get_latest_scalings()
assert latest_scalings is not None, "get_latest_scalings() should not return None after generation"
assert isinstance(latest_scalings, torch.Tensor)
assert torch.isfinite(latest_scalings).all(), "Scalings should contain finite values"
def test_per_token_normalization_with_softmax_topk(self, tokenizer, model, monkeypatch):
model.internal_xlora_classifier.config.top_k_lora = 2
model.internal_xlora_classifier.config.enable_softmax = False
model.internal_xlora_classifier.config.enable_softmax_topk = True
captured_data = []
orig_get_maybe_topk_scalings = XLoraLayer.get_maybe_topk_scalings
def mock_get_maybe_topk_scalings(self, scalings):
result = orig_get_maybe_topk_scalings(self, scalings)
if getattr(model, "internal_xlora_scalings", None) is not None:
captured_data.append(result)
return result
monkeypatch.setattr(XLoraLayer, "get_maybe_topk_scalings", mock_get_maybe_topk_scalings)
model.enable_scalings_logging()
inputs = tokenizer.encode("Test per token normalization", add_special_tokens=False, return_tensors="pt")
outputs = model.generate(
input_ids=inputs.to(self.torch_device),
max_new_tokens=1,
)
for scaling in captured_data:
weight_sums = scaling.sum(dim=-1)
assert torch.allclose(weight_sums, torch.ones_like(weight_sums), atol=1e-5), (
"Per-token scaling weights are not normalized to sum to 1."
)
|