File size: 67,293 Bytes
302920f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations

import copy
import functools
import inspect
import os
import re
import warnings
from collections.abc import Sequence
from contextlib import nullcontext
from operator import attrgetter
from typing import Any, Optional, Union

import accelerate
import torch
import transformers
from accelerate import FullyShardedDataParallelPlugin
from accelerate.hooks import add_hook_to_module, remove_hook_from_module
from accelerate.utils import is_npu_available, is_xpu_available
from huggingface_hub import file_exists
from huggingface_hub.errors import EntryNotFoundError, HFValidationError
from packaging import version
from safetensors.torch import storage_ptr, storage_size
from transformers import PreTrainedModel

from ..import_utils import is_auto_gptq_available, is_gptqmodel_available, is_torch_tpu_available
from .constants import (
    CONFIG_NAME,
    EMBEDDING_LAYER_NAMES,
    INCLUDE_LINEAR_LAYERS_SHORTHAND,
    SAFETENSORS_WEIGHTS_NAME,
    TRANSFORMERS_MODELS_TO_ADALORA_TARGET_MODULES_MAPPING,
    TRANSFORMERS_MODELS_TO_BOFT_TARGET_MODULES_MAPPING,
    TRANSFORMERS_MODELS_TO_BONE_TARGET_MODULES_MAPPING,
    TRANSFORMERS_MODELS_TO_C3A_TARGET_MODULES_MAPPING,
    TRANSFORMERS_MODELS_TO_FOURIERFT_TARGET_MODULES_MAPPING,
    TRANSFORMERS_MODELS_TO_HRA_TARGET_MODULES_MAPPING,
    TRANSFORMERS_MODELS_TO_IA3_FEEDFORWARD_MODULES_MAPPING,
    TRANSFORMERS_MODELS_TO_IA3_TARGET_MODULES_MAPPING,
    TRANSFORMERS_MODELS_TO_LNTUNING_TARGET_MODULES_MAPPING,
    TRANSFORMERS_MODELS_TO_LOHA_TARGET_MODULES_MAPPING,
    TRANSFORMERS_MODELS_TO_LOKR_TARGET_MODULES_MAPPING,
    TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING,
    TRANSFORMERS_MODELS_TO_MISS_TARGET_MODULES_MAPPING,
    TRANSFORMERS_MODELS_TO_OFT_TARGET_MODULES_MAPPING,
    TRANSFORMERS_MODELS_TO_POLY_TARGET_MODULES_MAPPING,
    TRANSFORMERS_MODELS_TO_PREFIX_TUNING_POSTPROCESS_MAPPING,
    TRANSFORMERS_MODELS_TO_RANDLORA_TARGET_MODULES_MAPPING,
    TRANSFORMERS_MODELS_TO_ROAD_TARGET_MODULES_MAPPING,
    TRANSFORMERS_MODELS_TO_SHIRA_TARGET_MODULES_MAPPING,
    TRANSFORMERS_MODELS_TO_VBLORA_TARGET_MODULES_MAPPING,
    TRANSFORMERS_MODELS_TO_VERA_TARGET_MODULES_MAPPING,
    TRANSFORMERS_MODELS_TO_WAVEFT_TARGET_MODULES_MAPPING,
    WEIGHTS_NAME,
    bloom_model_postprocess_past_key_value,
    starcoder_model_postprocess_past_key_value,
)


mlu_available = False
if version.parse(accelerate.__version__) >= version.parse("0.29.0"):
    from accelerate.utils import is_mlu_available

    mlu_available = is_mlu_available()


__all__ = [
    "CONFIG_NAME",
    "EMBEDDING_LAYER_NAMES",
    "INCLUDE_LINEAR_LAYERS_SHORTHAND",
    "SAFETENSORS_WEIGHTS_NAME",
    "TRANSFORMERS_MODELS_TO_ADALORA_TARGET_MODULES_MAPPING",
    "TRANSFORMERS_MODELS_TO_BOFT_TARGET_MODULES_MAPPING",
    "TRANSFORMERS_MODELS_TO_BONE_TARGET_MODULES_MAPPING",
    "TRANSFORMERS_MODELS_TO_C3A_TARGET_MODULES_MAPPING",
    "TRANSFORMERS_MODELS_TO_FOURIERFT_TARGET_MODULES_MAPPING",
    "TRANSFORMERS_MODELS_TO_HRA_TARGET_MODULES_MAPPING",
    "TRANSFORMERS_MODELS_TO_IA3_FEEDFORWARD_MODULES_MAPPING",
    "TRANSFORMERS_MODELS_TO_IA3_TARGET_MODULES_MAPPING",
    "TRANSFORMERS_MODELS_TO_LNTUNING_TARGET_MODULES_MAPPING",
    "TRANSFORMERS_MODELS_TO_LOHA_TARGET_MODULES_MAPPING",
    "TRANSFORMERS_MODELS_TO_LOKR_TARGET_MODULES_MAPPING",
    "TRANSFORMERS_MODELS_TO_LORA_TARGET_MODULES_MAPPING",
    "TRANSFORMERS_MODELS_TO_MISS_TARGET_MODULES_MAPPING",
    "TRANSFORMERS_MODELS_TO_OFT_TARGET_MODULES_MAPPING",
    "TRANSFORMERS_MODELS_TO_POLY_TARGET_MODULES_MAPPING",
    "TRANSFORMERS_MODELS_TO_PREFIX_TUNING_POSTPROCESS_MAPPING",
    "TRANSFORMERS_MODELS_TO_RANDLORA_TARGET_MODULES_MAPPING",
    "TRANSFORMERS_MODELS_TO_ROAD_TARGET_MODULES_MAPPING",
    "TRANSFORMERS_MODELS_TO_SHIRA_TARGET_MODULES_MAPPING",
    "TRANSFORMERS_MODELS_TO_VBLORA_TARGET_MODULES_MAPPING",
    "TRANSFORMERS_MODELS_TO_VERA_TARGET_MODULES_MAPPING",
    "TRANSFORMERS_MODELS_TO_WAVEFT_TARGET_MODULES_MAPPING",
    "WEIGHTS_NAME",
    "bloom_model_postprocess_past_key_value",
    "starcoder_model_postprocess_past_key_value",
]


# Get current device name based on available devices
def infer_device() -> str:
    if torch.cuda.is_available():
        return "cuda"
    elif hasattr(torch.backends, "mps") and torch.backends.mps.is_available():
        return "mps"
    elif mlu_available:
        return "mlu"
    elif is_xpu_available():
        return "xpu"
    elif is_npu_available():
        return "npu"
    return "cpu"


def prepare_model_for_kbit_training(model, use_gradient_checkpointing=True, gradient_checkpointing_kwargs=None):
    r"""
    Note this method only works for `transformers` models.

    This method wraps the entire protocol for preparing a model before running a training. This includes:
        1- Cast the layernorm in fp32 2- making output embedding layer require grads 3- Add the upcasting of the lm
        head to fp32 4- Freezing the base model layers to ensure they are not updated during training


    Args:
        model (`transformers.PreTrainedModel`):
            The loaded model from `transformers`
        use_gradient_checkpointing (`bool`, *optional*, defaults to `True`):
            If True, use gradient checkpointing to save memory at the expense of slower backward pass.
        gradient_checkpointing_kwargs (`dict`, *optional*, defaults to `None`):
            Keyword arguments to pass to the gradient checkpointing function, please refer to the documentation of
            `torch.utils.checkpoint.checkpoint` for more details about the arguments that you can pass to that method.
            Note this is only available in the latest transformers versions (> 4.34.1).
    """
    loaded_in_kbit = getattr(model, "is_loaded_in_8bit", False) or getattr(model, "is_loaded_in_4bit", False)
    is_gptq_quantized = getattr(model, "quantization_method", None) == "gptq"
    is_aqlm_quantized = getattr(model, "quantization_method", None) == "aqlm"
    is_eetq_quantized = getattr(model, "quantization_method", None) == "eetq"
    is_torchao_quantized = getattr(model, "quantization_method", None) == "torchao"
    is_hqq_quantized = getattr(model, "quantization_method", None) == "hqq" or getattr(model, "hqq_quantized", False)

    if gradient_checkpointing_kwargs is None:
        gradient_checkpointing_kwargs = {}

    for name, param in model.named_parameters():
        # freeze base model's layers
        param.requires_grad = False

    if (
        not is_gptq_quantized
        and not is_aqlm_quantized
        and not is_eetq_quantized
        and not is_hqq_quantized
        and not is_torchao_quantized
    ):
        # cast all non INT8 parameters to fp32
        for param in model.parameters():
            if (
                (param.dtype == torch.float16) or (param.dtype == torch.bfloat16)
            ) and param.__class__.__name__ != "Params4bit":
                param.data = param.data.to(torch.float32)

    if (
        loaded_in_kbit
        or is_gptq_quantized
        or is_aqlm_quantized
        or is_eetq_quantized
        or is_hqq_quantized
        or is_torchao_quantized
    ) and use_gradient_checkpointing:
        # When having `use_reentrant=False` + gradient_checkpointing, there is no need for this hack
        if "use_reentrant" not in gradient_checkpointing_kwargs or gradient_checkpointing_kwargs["use_reentrant"]:
            # For backward compatibility
            if hasattr(model, "enable_input_require_grads"):
                model.enable_input_require_grads()
            else:

                def make_inputs_require_grad(module, input, output):
                    output.requires_grad_(True)

                model.get_input_embeddings().register_forward_hook(make_inputs_require_grad)

        # To support older transformers versions, check if the model supports gradient_checkpointing_kwargs
        _supports_gc_kwargs = "gradient_checkpointing_kwargs" in list(
            inspect.signature(model.gradient_checkpointing_enable).parameters
        )

        if not _supports_gc_kwargs and len(gradient_checkpointing_kwargs) > 0:
            warnings.warn(
                "gradient_checkpointing_kwargs is not supported in this version of transformers. The passed kwargs will be ignored."
                " if you want to use that feature, please upgrade to the latest version of transformers.",
                FutureWarning,
            )

        gc_enable_kwargs = (
            {} if not _supports_gc_kwargs else {"gradient_checkpointing_kwargs": gradient_checkpointing_kwargs}
        )

        # enable gradient checkpointing for memory efficiency
        model.gradient_checkpointing_enable(**gc_enable_kwargs)
    return model


# copied from transformers.models.bart.modeling_bart
def shift_tokens_right(input_ids: torch.Tensor, pad_token_id: int, decoder_start_token_id: int):
    """
    Shift input ids one token to the right.

    Args:
        input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): input ids
        pad_token_id (`int`): The id of the `padding` token.
        decoder_start_token_id (`int`): The id of the `start` token.
    """
    shifted_input_ids = input_ids.new_zeros(input_ids.shape)
    shifted_input_ids[:, 1:] = input_ids[:, :-1].clone()
    shifted_input_ids[:, 0] = decoder_start_token_id

    if pad_token_id is None:
        raise ValueError("self.model.config.pad_token_id has to be defined.")
    # replace possible -100 values in labels by `pad_token_id`
    shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id)

    return shifted_input_ids


class AuxiliaryTrainingWrapper(torch.nn.Module):
    """Wrap a specific module so that it can be trained and saved in a way that is tangential to how
    PEFT normally works, e.g. fully training a classification layer instead of using an adapter.

    """

    # All names of layers that may contain adapter (trainable) weights
    adapter_layer_names: tuple[str, ...] = ()
    # All names of other parameters that may contain adapter-related parameters
    other_param_names: tuple[str, ...] = ()
    # List all merged adapters
    merged_adapters: list[str] = []

    def __init__(self, module_to_save, adapter_name, **kwargs):
        """Extra kwargs will be passed to `self.init_modules` and `self.update`."""
        super().__init__()
        self.original_module = module_to_save
        self._active_adapter = [adapter_name]
        self._disable_adapters = False
        self._adapters = set()

        self.init_modules(adapter_name, **kwargs)

        self.update(adapter_name, **kwargs)
        self.check_module()

    def init_modules(self, adapter_name, **kwargs):
        """A place to initialize PyTorch modules in `__init__` before the call to `self.update()`."""
        raise NotImplementedError

    def _get_available_adapters(self) -> set[str]:
        """Return all adapter names that can be found on this module."""
        raise NotImplementedError

    def _error_message_name(self):
        """Returns a user friendly identifier for error messages, e.g. for type compatibility error messages from
        `check_module()` so that the user can backtrack where the error comes from. A generic "training wrapper" is
        less helpful than "modules_to_save", for example.
        """
        return "training wrapper"

    def check_module(self):
        """Perform some sanity checks on the module to ensure that it works"""
        # Try to anticipate some modules that users could try to target that would not work.
        # Note: It's not possible to check hasattr(module, "forward"), since that returns True for ModuleDict and
        # ModuleList, even though their forward methods cannot be called
        forbidden_classes = (torch.nn.ModuleDict, torch.nn.ModuleList, torch.nn.ParameterDict, torch.nn.ParameterList)
        if isinstance(self.original_module, forbidden_classes):
            cls_name = self.original_module.__class__
            raise TypeError(f"{self._error_message_name()} cannot be applied to modules of type {cls_name}")

        # local import to avoid circular import
        from peft.tuners.tuners_utils import BaseTunerLayer

        if isinstance(self.original_module, BaseTunerLayer):
            # e.g. applying a training wrapper to a lora layer makes no sense
            cls_name = self.original_module.__class__
            raise TypeError(f"{self._error_message_name()} cannot be applied to modules of type {cls_name}")

    @property
    def disable_adapters(self) -> bool:
        # use a property to ensure that disable_adapters is not set directly, instead use the enable_adapters method
        return self._disable_adapters

    @property
    def active_adapter(self) -> Union[list[str], str]:
        # use a property to ensure that active_adapter is not set directly, instead use the set_adapter method
        return self._active_adapter

    @property
    def active_adapters(self) -> list[str]:
        if isinstance(self._active_adapter, str):
            return [self._active_adapter]
        return self._active_adapter

    def _hasattr_wrapped(self, name, modules):
        """Infrastructure to enable the implementing class to delegate attributes to other modules.
        Returns True if the implementing class knows how to handle attribute `name`.

        Gets passed `modules` which is PyTorch's internal list of assigned modules from `nn.Module`.
        """
        return False

    def _getattr_wrapped(self, name, modules):
        """If `_hasattr_wrapped` returns True for `name`, then this function should return the corresponding
        value associated with `name`.
        """
        return None

    def __getattr__(self, name: str):
        # Note: This whole method may seem overly complex at first but PyTorch messes with __getattr__ in a way that
        # requires very careful handling to avoid infinite recursion.
        try:
            return super().__getattr__(name)
        except AttributeError:
            pass

        if "_modules" not in self.__dict__:
            raise AttributeError(f"'{type(self).__name__}' object has no attribute '{name}'")

        # Could not find the attribute the PyTorch way. So let's check if it's an attribute on the
        # original_module or the module further down (e.g., `modules_to_save[active_adapter]`).
        modules = self.__dict__["_modules"]
        if self.disable_adapters:
            return getattr(self.original_module, name)
        elif self._hasattr_wrapped(name, modules):
            return self._getattr_wrapped(name, modules)

        # For some reason, there is no module corresponding to the active adapter; this should normally not be
        # reached and exists as a failsafe (otherwise, a KeyError would be raised)
        raise AttributeError(f"'{type(self).__name__}' object has no attribute '{name}'")

    def update(self, adapter_name, **kwargs):
        """Called when this instance should be part of an adapter's training.
        Adds the given adapter to the list of adapters that this instance is training along with.

        Additional kwargs are expected to be the same kwargs that are also passed for initializing this class.
        """
        if adapter_name not in self._adapters:
            self._adapters.add(adapter_name)

    def _create_new_hook(self, old_hook):
        r"""
        Creates a new hook based on the old hook. Use it only if you know what you are doing !
        """
        old_hook_cls = getattr(accelerate.hooks, old_hook.__class__.__name__)
        old_hook_attr = old_hook.__dict__
        filtered_old_hook_attr = {}
        old_hook_init_signature = inspect.signature(old_hook_cls.__init__)
        for k in old_hook_attr.keys():
            if k in old_hook_init_signature.parameters:
                filtered_old_hook_attr[k] = old_hook_attr[k]
        new_hook = old_hook_cls(**filtered_old_hook_attr)
        return new_hook

    def _check_forward_args(self, x, *args, **kwargs):
        """Check if the arguments are compatible with the configs and state of the model"""
        adapter_names = kwargs.get("adapter_names", None)
        if adapter_names is None:
            return

        if len(x) != len(adapter_names):
            msg = (
                "Length of `adapter_names` should be the same as the number of inputs, but got "
                f"{len(adapter_names)} and {len(x)} respectively."
            )
            raise ValueError(msg)

    def _forward_wrapped(self, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor:
        raise NotImplementedError

    def _forward_wrapped_mixed_batch(
        self, x: torch.Tensor, active_adapter: str, *args: Any, **kwargs: Any
    ) -> torch.Tensor:
        raise NotImplementedError

    def _forward_wrapped_passthrough(self, x: torch.Tensor, *args: Any, **kwargs: Any) -> torch.Tensor:
        """The forward call when no adapter is involved in the forward computation, only the base model"""
        raise NotImplementedError

    def _mixed_batch_forward(
        self, input: torch.Tensor, *args: Any, adapter_names: list[str], **kwargs: Any
    ) -> torch.Tensor:
        # This is a special method that handles the case when users pass the argument `adapter_names`. This is an
        # extra argument that allows mixing different adapters in the same batch at inference time.

        SUPPORTED_MODULES = (torch.nn.Linear, torch.nn.Embedding, torch.nn.Conv1d, torch.nn.Conv2d, torch.nn.Conv3d)

        module_names = ", ".join([module.__name__ for module in SUPPORTED_MODULES])

        if not isinstance(self.original_module, SUPPORTED_MODULES):
            raise TypeError(f"Mixed batching is only supported for the following modules: {module_names}.")

        unique_adapters = set(adapter_names)
        sub_batch_indices_list = []

        for adapter in unique_adapters:
            sub_batch_indices_list.append([index for index, item in enumerate(adapter_names) if item == adapter])

        results = [0 for _ in range(len(input))]

        for i, active_adapter in enumerate(unique_adapters):
            sub_batch = input[sub_batch_indices_list[i]]

            if active_adapter == "__base__":
                output = self.original_module(sub_batch, *args, **kwargs)
            else:
                output = self._forward_wrapped_mixed_batch(sub_batch, active_adapter, *args, **kwargs)

            for index, j in enumerate(sub_batch_indices_list[i]):
                results[j] = output[index]

        return torch.stack(results)

    def forward(self, x: torch.Tensor, *args, **kwargs):
        self._check_forward_args(x, *args, **kwargs)
        adapter_names = kwargs.pop("adapter_names", None)

        if self.disable_adapters or any(adapter not in self._adapters for adapter in self.active_adapters):
            return self._forward_wrapped_passthrough(x, *args, **kwargs)

        if adapter_names is None:
            return self._forward_wrapped(x, *args, **kwargs)
        return self._mixed_batch_forward(x, *args, adapter_names=adapter_names, **kwargs)

    def enable_adapters(self, enabled: bool):
        """Toggle the enabling and disabling of adapters

        Args:
            enabled (bool): True to enable adapters, False to disable adapters
        """
        if enabled:
            self._disable_adapters = False
        else:
            self._disable_adapters = True

    def check_set_adapter(self, adapter_name: str | list[str]) -> str | None:
        """Helper function to check if the given adapter(s) can be set.

        Return the name of the adapter to be set or None if no adapter should be set.
        """
        raise NotImplementedError

    def set_adapter(self, adapter_names: Union[str, list[str]], inference_mode: bool = False) -> None:
        """Set the active adapter

        Args:
            adapter_names (str or list[str]):
                The name(s) of the adapter(s) to set as active
            inference_mode (bool, optional):
                 Whether the activated adapter should be frozen (i.e. `requires_grad=False`). Default is False.
        """
        if isinstance(adapter_names, str):
            self._active_adapter = adapter_names
        else:
            self._active_adapter = []
            for adapter_name in adapter_names:
                if adapter_name not in self._adapters:
                    raise ValueError(f"Adapter {adapter_name} not found in {self._adapters}")

                self._active_adapter.append(adapter_name)

    def delete_adapter(self, adapter_name: str, new_active_adapters: Optional[list[str]]) -> None:
        """Delete an adapter from the layer, set a new active adapter if necessary"""
        raise NotImplementedError

    def set_requires_grad(self, adapter_names: str | Sequence[str], requires_grad: bool = True) -> None:
        """
        Enable or disable gradients on the given adapter(s).

        Args:
            adapter_name (`str` or `Sequence[str]`):
                The name of the adapter(s) whose gradients should be enabled/disabled.
            requires_grad (`bool`, *optional*)
                Whether to enable (`True`, default) or disable (`False`).
        """
        if isinstance(adapter_names, str):
            adapter_names_set = {adapter_names}
        else:
            adapter_names_set = set(adapter_names)

        for layer_name in self.adapter_layer_names:
            # use attrgetter, as it resolves `.` in the attribute name
            module_dict = attrgetter(layer_name)(self)
            for key, layer in module_dict.items():
                if key in adapter_names_set:
                    layer.requires_grad_(requires_grad)

    def adapter_state_dict(self, adapter_name):
        """Return the state dict of this module for a given adapter."""
        raise NotImplementedError

    def adapter_state_dict_load_map(self, adapter_name):
        """Return a mapping from the key present in disk-loaded state dict
        and how it should be represented in the loaded model's state dict.

        The default should be a 1:1 mapping but it is important to define a mapping as it also serves as the
        ground-truth for which keys are supposed to be loaded from a saved state dict.
        """
        raise NotImplementedError

    def unload_and_optionally_merge_module(
        self, merge: bool, safe_merge: bool, adapter_names: Optional[list[str]]
    ) -> torch.nn.Module:
        """Handles unloading when called from PEFT models. Returns the wrapped module
        and handles merging onto the wrapped module if requested.
        """
        raise NotImplementedError


class ModulesToSaveWrapper(AuxiliaryTrainingWrapper):
    """Wraps a module that is supposed to be trained (i.e. `requires_grad_(True)`) and saved after training."""

    # All names of layers that may contain adapter (trainable) weights
    adapter_layer_names: tuple[str, ...] = ("modules_to_save",)

    def __init__(self, module_to_save, adapter_name):
        super().__init__(module_to_save, adapter_name)

    def init_modules(self, adapter_name):
        # we treat each adapter separately, so we have multiple adapters, same (copied) module for each
        self.modules_to_save = torch.nn.ModuleDict({})

    def _error_message_name(self):
        return "modules_to_save"

    def _forward_wrapped(self, x, *args, **kwargs):
        if not self.active_adapters:
            return self._forward_wrapped_passthrough(x, *args, **kwargs)
        return self.modules_to_save[self.active_adapters[0]](x, *args, **kwargs)

    def _forward_wrapped_mixed_batch(self, x, active_adapter, *args, **kwargs):
        return self.modules_to_save[active_adapter](x, *args, **kwargs)

    def _forward_wrapped_passthrough(self, x, *args, **kwargs):
        return self.original_module(x, *args, **kwargs)

    def _hasattr_wrapped(self, name, modules):
        return self.active_adapters[0] in modules["modules_to_save"]

    def _getattr_wrapped(self, name, modules):
        return getattr(modules["modules_to_save"][self.active_adapters[0]], name)

    def update(self, adapter_name, **kwargs):
        super().update(adapter_name)

        context_manager = nullcontext()
        for _, param in self.original_module.named_parameters():
            num_params = param.numel()
            # if using DS Zero 3 and the weights are initialized empty
            if num_params == 0 and hasattr(param, "ds_numel"):
                import deepspeed

                context_manager = deepspeed.zero.GatheredParameters(self.original_module.parameters(), modifier_rank=0)
                break

        if adapter_name not in self.modules_to_save:
            with context_manager:
                self.modules_to_save[adapter_name] = copy.deepcopy(self.original_module)

        if hasattr(self.modules_to_save[adapter_name], "_hf_hook"):
            old_hook = self.modules_to_save[adapter_name]._hf_hook
            new_hook = self._create_new_hook(old_hook)
            remove_hook_from_module(self.modules_to_save[adapter_name])
            add_hook_to_module(self.modules_to_save[adapter_name], new_hook)

        self.original_module.requires_grad_(False)

        # note that there currently cannot be more than one active adapter for the same layer with modules to save
        # since there would be no clear way to decide which adapter's weights are the correct ones. therefore we
        # assume that there is only one active adapter. this precondition is enforced by _set_adapter.
        if adapter_name == self.active_adapter:
            self.modules_to_save[adapter_name].requires_grad_(True)

    def enable_adapters(self, enabled: bool):
        """Takes care of setting the required_grad flag on the wrapped module.
        If adapters are enabled, gradients for the module are required as well.
        """
        super().enable_adapters(enabled)

        if enabled:
            self.original_module.requires_grad_(False)
            for adapter_name in self.active_adapters:
                self.modules_to_save[adapter_name].requires_grad_(True)
        else:
            self.original_module.requires_grad_(True)
            self.modules_to_save.requires_grad_(False)

    def check_set_adapter(self, adapter_name: str | list[str]) -> str | None:
        """Helper function to check if the given adapter(s) can be set.

        Return the name of the adapter to be set or None if no adapter should be set.
        """
        if isinstance(adapter_name, str):
            return adapter_name

        # adapter_name is a list of str
        if len(adapter_name) == 0:
            raise ValueError("Please specify at least one adapter to set")

        adapter_names_in_module = [n for n in adapter_name if n in self.modules_to_save]

        if len(adapter_names_in_module) > 1:
            raise ValueError(f"Only one adapter can be set at a time for {self}, got {len(adapter_names_in_module)}")

        adapter_name_to_set: str | None
        if not adapter_names_in_module:
            adapter_name_to_set = None
        else:
            adapter_name_to_set = adapter_names_in_module[0]

        return adapter_name_to_set

    def set_adapter(self, adapter_names: Union[str, list[str]], inference_mode: bool = False) -> None:
        """Set the active adapter

        Additionally, this function will set the specified adapter to trainable (i.e., requires_grad=True) unless
        inference_mode is True.

        Args:
            adapter_names (list[str], str):
                 The name(s) of the adapter(s) to set as active.
            inference_mode (bool, optional):
                 Whether the activated adapter should be frozen (i.e. `requires_grad=False`). Default is False.
        """
        if isinstance(adapter_names, str):
            adapter_names = [adapter_names]

        if len(adapter_names) > 1:
            raise ValueError(f"Attempted to set multiple ({adapter_names}) adapters at once for modules_to_save.")

        if len(adapter_names) == 0:
            # when calling model.add_adapter, the new adapter is not automatically active
            self._active_adapter = []
            return

        adapter_name = adapter_names[0]

        if adapter_name not in self._adapters:
            raise ValueError(f"Adapter {adapter_name} not found in {self._adapters}")

        for currently_active_adapter_name in self.active_adapters:
            self.modules_to_save[currently_active_adapter_name].requires_grad_(False)
        self.modules_to_save[adapter_name].requires_grad_(not inference_mode)
        self._active_adapter = adapter_name

    def delete_adapter(self, adapter_name: str, new_active_adapters: Optional[list[str]]) -> None:
        """
        Delete the adapter if present.

        This method will also set a new active adapter if the deleted adapter was the active adapter. It is important
        that the new adapter is chosen by the caller in a deterministic way, so that the same adapter is chosen on all
        layers.
        """
        if adapter_name not in self.modules_to_save:
            return

        # set new active adapter, if necessary
        # note: there can only ever be one active adapter, unlike for LoRA etc.
        if isinstance(new_active_adapters, (list, tuple)) and len(new_active_adapters) > 1:
            name = self.__class__.__name__
            raise ValueError(
                f"Attempted to set multiple ({new_active_adapters}) adapters at once for {name}, which is not allowed."
            )

        if adapter_name in self._adapters:
            self._adapters.remove(adapter_name)

        if not new_active_adapters:
            # no active adapter now
            del self.modules_to_save[adapter_name]
            self._active_adapter = []
            return

        new_active_adapter = new_active_adapters[0]
        if new_active_adapter not in self.modules_to_save:
            # a new active adapter was chosen but it seems like it has no modules_to_save
            del self.modules_to_save[adapter_name]
            self._active_adapter = []
            return

        if new_active_adapter != self.active_adapters[0]:
            self.set_adapter(new_active_adapter)
        del self.modules_to_save[adapter_name]

    def adapter_state_dict_load_map(self, adapter_name):
        # Maps the module keys as they are in the saved state dict to the in-memory state dict.
        # Must contain all keys that are supposed to be loaded.
        if adapter_name not in self._adapters:
            # In caes of multiple adapters, each bringing their own modules to save, each
            # ModulesToSaveWrapper will be queried but not every wrapper is obliged to serve the same adapters.
            return {}
        return {k: f"modules_to_save.{adapter_name}.{k}" for k in self.modules_to_save[adapter_name].state_dict()}

    def adapter_state_dict(self, adapter_name, state_dict):
        if adapter_name not in self._adapters:
            # In caes of multiple adapters, each bringing their own modules to save, each
            # ModulesToSaveWrapper will be queried but not every wrapper is obliged to serve the same adapters.
            return {}

        return {
            k: state_dict[f"modules_to_save.{adapter_name}.{k}"]
            for k in self.modules_to_save[adapter_name].state_dict()
        }

    def unload_and_optionally_merge_module(
        self, merge: bool, safe_merge: bool, adapter_names: Optional[list[str]]
    ) -> torch.nn.Module:
        """Unloading in case of `ModulesToSave` means to simply return the wrapped module.

        However, if the wrapped module is itself a tuner, we'll call merge on it before.
        """
        new_module = self.modules_to_save[self.active_adapter]

        # TODO: not sure if this is still a sensible thing to do. We would basically have to
        # do the same checks as `_unload_and_optionally_merge` to support MHA, for example.
        if hasattr(new_module, "base_layer"):
            # check if the module is itself a tuner layer
            if merge:
                new_module.merge(safe_merge=safe_merge, adapter_names=adapter_names)
            new_module = new_module.get_base_layer()

        return new_module

    def _get_available_adapters(self) -> set[str]:
        """Return all adapter names that can be found on this module."""
        return set(self.modules_to_save.keys())


class TrainableTokensWrapper(AuxiliaryTrainingWrapper):
    """Wraps a module (typically an embedding layer) that is supposed to be re-trained selectively (i.e.
    solely updating a few columns) using the `TrainableTokensLayer` PEFT method.

    Supports weight-tying to another adapter when passed a `tied_adapter` which is expected to be a
    `TrainableTokensLayer`.
    """

    # All names of layers that may contain adapter (trainable) weights
    adapter_layer_names: tuple[str, ...] = ("token_adapter.trainable_tokens_delta",)
    other_param_names: tuple[str, ...] = ("token_adapter.token_indices", "token_adapter.trainable_tokens_original")

    def __init__(
        self,
        module_to_save: torch.nn.Module,
        adapter_name: str,
        token_indices: list[int],
        tied_adapter=None,
    ) -> None:
        super().__init__(module_to_save, adapter_name, token_indices=token_indices, tied_adapter=tied_adapter)

        # unset the original_module attribute since we're using a property to remove this from the state dict.
        self.original_module = None

    @property
    def original_module(self):
        # use a property instead of an attribute to exclude this pointer from the state dict
        # to make sure that it will not be saved.
        return self.token_adapter.base_layer

    def init_modules(self, adapter_name, token_indices, tied_adapter):
        # use a local import to avoid potential circular imports
        from peft.tuners.trainable_tokens import TrainableTokensLayer

        # since super().__init__() calls update before we have a chance to initialise the adapter we would
        # need here, we do the initialization here.
        self.token_adapter = TrainableTokensLayer(self.original_module, adapter_name, token_indices, tied_adapter)

    def _error_message_name(self):
        return "trainable_token_indices"

    def _hasattr_wrapped(self, name, modules):
        return name == "weight"

    def _getattr_wrapped(self, name, modules):
        # some models query self.wte.weight.dtype, some may query the weights directly. for the first case it is not
        # necessary to do anything special but we don't know if is going to be `.dtype`. so we need to get the merged
        # weights from the adapter.
        if name == "weight":
            return modules["token_adapter"].get_merged_weights(self.token_adapter.active_adapters)

        raise RuntimeError(
            f"This code should've never been reached, probably a bad check in `_hasattr_wrapped` for {name}. "
            "Please file an issue under https://github.com/huggingface/peft/issues."
        )

    def _forward_wrapped(self, x, *args, **kwargs):
        if not self.active_adapters:
            return self._forward_wrapped_passthrough(x, *args, **kwargs)
        return self.token_adapter(x)

    def _forward_wrapped_mixed_batch(self, x, active_adapter, *args, **kwargs):
        return self.token_adapter.forward_adapters(x, [active_adapter])

    def _forward_wrapped_passthrough(self, x, *args, **kwargs):
        # the token adapter knows how to deal with disabled adapter / no active adapter, don't call original_module
        # directly
        return self.token_adapter(x, *args, **kwargs)

    def update(self, active_adapter, **kwargs):
        # TODO this does not support deepspeed/fsdp since it is missing a context manager
        # see ModulesToSaveWrapper implementation
        if active_adapter not in self._adapters:
            self.token_adapter.update_layer(active_adapter, **kwargs)

        super().update(active_adapter)

    def adapter_state_dict_load_map(self, adapter_name):
        if self.token_adapter.tied_adapter:
            return {}
        return {"token_adapter.trainable_tokens_delta": f"token_adapter.trainable_tokens_delta.{adapter_name}"}

    def adapter_state_dict(self, adapter_name, state_dict):
        if self.token_adapter.tied_adapter:
            # storing of weight-tied layers is not up to us and will be handled by
            # transformers. we're just here to keep those layers in sync during training.
            # therefore we return an empty state dict.
            return {}

        return {
            f"token_adapter.{k}": state_dict[f"token_adapter.{k}.{adapter_name}"] for k in ["trainable_tokens_delta"]
        }

    def enable_adapters(self, enabled: bool):
        """Enables/disables the underlying `TrainableTokens` adapter.
        Also handles the internal adapter disable flag.
        """
        super().enable_adapters(enabled)

        self.token_adapter.enable_adapters(enabled)

    def check_set_adapter(self, adapter_name: str | list[str]) -> str | None:
        """Helper function to check if the given adapter(s) can be set.

        Return the name of the adapter to be set or None if no adapter should be set.
        """
        if isinstance(adapter_name, str):
            return adapter_name

        # adapter_name is a list of str
        if len(adapter_name) == 0:
            raise ValueError("Please specify at least one adapter to set")

        # TODO In theory, multiple active trainable tokens is fine when the indices don't overlap
        adapter_names_in_module = [n for n in adapter_name if n in self.token_adapter.trainable_tokens_delta]

        if len(adapter_names_in_module) > 1:
            raise ValueError(f"Only one adapter can be set at a time for {self}, got {len(adapter_names_in_module)}")

        adapter_name_to_set: str | None
        if not adapter_names_in_module:
            adapter_name_to_set = None
        else:
            adapter_name_to_set = adapter_names_in_module[0]

        return adapter_name_to_set

    def set_adapter(self, adapter_names: Union[str, list[str]], inference_mode: bool = False) -> None:
        super().set_adapter(adapter_names, inference_mode=inference_mode)
        self.token_adapter.set_adapter(adapter_names, inference_mode=inference_mode)

    def delete_adapter(self, adapter_name: str, new_active_adapters: Optional[list[str]]) -> None:
        """
        Delete the adapter if present.

        This method will also set a new active adapter if the deleted adapter was the active adapter. It is important
        that the new adapter is chosen by the caller in a deterministic way, so that the same adapter is chosen on all
        layers.
        """
        self.token_adapter.delete_adapter(adapter_name)

        # set new active adapter, if necessary
        # note: there can only ever be one active adapter, unlike for LoRA etc.
        if isinstance(new_active_adapters, (list, tuple)) and len(new_active_adapters) > 1:
            name = self.__class__.__name__
            raise ValueError(
                f"Attempted to set multiple ({new_active_adapters}) adapters at once for {name}, which is not allowed."
            )

        if adapter_name in self._adapters:
            self._adapters.remove(adapter_name)

        if not new_active_adapters:
            self._active_adapter = []
            return

        if new_active_adapters[0] not in self.token_adapter.trainable_tokens_delta:
            # a new active adapter was chosen but it seems like it has no trainable_tokens
            self._active_adapter = []
            return

        new_active_adapter = new_active_adapters[0]
        self.set_adapter(new_active_adapter)

    def unload_and_optionally_merge_module(
        self, merge: bool, safe_merge: bool, adapter_names: Optional[list[str]]
    ) -> torch.nn.Module:
        """Unloading for `TrainableTokensWrapper` means to return the wrapped module, e.g. the embedding layer and,
        if requested, merging the `TrainableTokens` adapter onto the wrapped module.
        """
        if merge:
            self.token_adapter.merge(safe_merge=safe_merge, adapter_names=adapter_names)
        return self.token_adapter.get_base_layer()

    def _get_available_adapters(self) -> set[str]:
        """Return all adapter names that can be found on this module."""
        return set(self.token_adapter.trainable_tokens_delta.keys())


def _get_input_embeddings_name(model, default=None):
    if not hasattr(model, "get_input_embeddings"):
        return default

    input_embeddings = model.get_input_embeddings()
    for name, module in model.named_modules():
        if module is input_embeddings:
            return name

    return default


def _get_submodules(model, key):
    parent = model.get_submodule(".".join(key.split(".")[:-1]))
    target_name = key.split(".")[-1]
    target = model.get_submodule(key)
    return parent, target, target_name


def _get_submodules_with_grandparent(model, key):
    parent = model.get_submodule(".".join(key.split(".")[:-1]))
    try:
        grandparent = model.get_submodule(".".join(key.split(".")[:-2]))
    except AttributeError:
        # no grand parent
        grandparent = None
    target_name = key.split(".")[-1]
    target = model.get_submodule(key)
    return parent, grandparent, target, target_name


def _freeze_adapter(model, adapter_name):
    for n, p in model.named_parameters():
        if adapter_name in n:
            p.requires_grad = False


def _set_trainable(
    model,
    adapter_name,
    module_names,
    inference_mode: bool,
    strict_module_check: bool = False,
    wrapper_cls: Optional[AuxiliaryTrainingWrapper] = None,
    activate_adapter: bool = True,
    **wrapper_kwargs,
):
    """Wraps modules that are supposed to be re-trained either normally, i.e. marking them to require gradients and
    saving them alongside other modules, or with certain methods that go alongside PEFT methods, such as retraining
    specific token indices using selective read/write.

    Note that you need to validate beforehand if there are layers targeted by multiple wrappers, e.g. if the
    'embedding' layer is configured for both `ModulesToSaveWrapper` and `TrainableTokensWrapper` there would be
    conflicts down the line.

    The default is to wrap the module in a `ModulesToSaveWrapper` wrapper.

    If `strict_module_check` is set, this method raises an ValueError, similar to BaseTuner.inject_adapter when none of
    the requested modules in `module_names` is not found in the model.

    The `active_adapter` flag indicates if this new adapter should be activated.
    """
    from peft.tuners.tuners_utils import BaseTunerLayer

    if wrapper_cls is None:
        wrapper_cls = ModulesToSaveWrapper

    if not module_names:
        # This is useful for the case that the PEFT config does not have `modules_to_save`, e.g.
        # in the case of prompt tuning and friends.
        return

    trainable_modules = []
    found_modules = set()
    # disable removal of duplicates to support targeting tied weights
    key_list = [key for key, _ in model.named_modules(remove_duplicate=False)]

    for key in key_list:
        target_module_found = any(key.endswith(target_key) for target_key in module_names)
        if target_module_found:
            parent, grandparent, target, target_name = _get_submodules_with_grandparent(model, key)
            if isinstance(grandparent, BaseTunerLayer):
                # This is an extreme edge case: Let's assume that there is a PEFT config with
                # modules_to_save=["default"], which is the same name as the adapter name. The PEFT method's adapter
                # (e.g. LoRA) is applied first. Then, when the modules_to_save matching is performed, the LoRA layer
                # would be considered a valid target. Assuming that the name is "foo.bar.lora_A.default", it would
                # match, with "default" being an nn.Linear and the parent, "lora_A", being an nn.ModuleDict. This by
                # itself is not enough to prove that this is an unintended match. Thererfore, we also need to check the
                # grandparent, "bar", that would be a lora.LoraLayer. When we see this, we should raise an error.
                raise ValueError(
                    f"You are trying to target a module with {wrapper_cls} that is a child of {type(grandparent)}. "
                    "This is almost certainly not the intended behavior. Please ensure that the adapter name, "
                    f"'{adapter_name}', does not conflict with any of the targeted modules."
                )

            if isinstance(target, wrapper_cls):
                target.update(adapter_name, **wrapper_kwargs)
                target.set_adapter(target.active_adapter, inference_mode=inference_mode)
            else:
                new_module = wrapper_cls(target, adapter_name, **wrapper_kwargs)
                if activate_adapter:
                    new_module.set_adapter(adapter_name, inference_mode=inference_mode)
                else:
                    new_module.set_adapter([], inference_mode=inference_mode)
                setattr(parent, target_name, new_module)
                trainable_modules.append(new_module)
            found_modules.add(target_name)

    not_found = set(module_names).difference(found_modules)
    if strict_module_check and not found_modules:
        raise ValueError(
            f"Target modules {not_found} not found in the base model. Please check the target modules and try again."
        )

    return trainable_modules


def _set_adapter(model, adapter_name: str | list[str], inference_mode: bool = False):
    for module in model.modules():
        if isinstance(module, AuxiliaryTrainingWrapper):
            # only check the adapter_name if we actually encounter a AuxiliaryTrainingWrapper, otherwise we don't care
            adapter_name_to_set = module.check_set_adapter(adapter_name)

            # if the adapter is found in this module, set it as the active adapter, else disable the adapters of this
            # module
            if adapter_name_to_set in module._adapters:
                module.enable_adapters(True)
                module.set_adapter(adapter_name_to_set, inference_mode=inference_mode)
            else:
                module.enable_adapters(False)
                module.set_adapter([], inference_mode=inference_mode)


def _prepare_prompt_learning_config(peft_config, model_config):
    # In case of VLM we focus on the language model portion of the model.
    if "text_config" in model_config:
        model_config = model_config["text_config"]

    if peft_config.num_layers is None:
        if "num_hidden_layers" in model_config:
            num_layers = model_config["num_hidden_layers"]
        elif "num_layers" in model_config:
            num_layers = model_config["num_layers"]
        elif "n_layer" in model_config:
            num_layers = model_config["n_layer"]
        else:
            raise ValueError("Please specify `num_layers` in `peft_config`")
        peft_config.num_layers = num_layers

    if peft_config.token_dim is None:
        if "hidden_size" in model_config:
            token_dim = model_config["hidden_size"]
        elif "n_embd" in model_config:
            token_dim = model_config["n_embd"]
        elif "d_model" in model_config:
            token_dim = model_config["d_model"]
        else:
            raise ValueError("Please specify `token_dim` in `peft_config`")
        peft_config.token_dim = token_dim

    if peft_config.num_attention_heads is None:
        if "num_attention_heads" in model_config:
            num_attention_heads = model_config["num_attention_heads"]
        elif "n_head" in model_config:
            num_attention_heads = model_config["n_head"]
        elif "num_heads" in model_config:
            num_attention_heads = model_config["num_heads"]
        elif "encoder_attention_heads" in model_config:
            num_attention_heads = model_config["encoder_attention_heads"]
        else:
            raise ValueError("Please specify `num_attention_heads` in `peft_config`")
        peft_config.num_attention_heads = num_attention_heads

    # For grouped-query attention, see #1901.
    if peft_config.peft_type == "PREFIX_TUNING" and "num_key_value_heads" in model_config:
        num_key_value_heads = model_config["num_key_value_heads"]
        peft_config.token_dim = peft_config.token_dim // peft_config.num_attention_heads * num_key_value_heads
        peft_config.num_attention_heads = num_key_value_heads

    if getattr(peft_config, "encoder_hidden_size", None) is None:
        setattr(peft_config, "encoder_hidden_size", peft_config.token_dim)

    return peft_config


def _get_no_split_modules(model) -> set[str]:
    """
    Get the modules of the model that should not be split when using device_map. We iterate through the modules to get
    the underlying `_no_split_modules`.

    Returns:
        `List[str]`: List of modules that should not be split
    """
    # After discussion in https://github.com/huggingface/transformers/pull/38141, based on:
    # https://github.com/huggingface/transformers/blob/1e921a3a9cea92b383ca4b0484ee45596bbdadc3/src/transformers/modeling_utils.py#L2677-L2704
    _no_split_modules: set[str] = set()
    if not hasattr(model, "_no_split_modules"):
        return _no_split_modules

    modules_to_check = [model]
    while len(modules_to_check) > 0:
        module = modules_to_check.pop(-1)
        # if the module does not appear in _no_split_modules, we also check the children
        if module.__class__.__name__ not in _no_split_modules:
            if isinstance(module, PreTrainedModel):
                if module._no_split_modules is not None:
                    _no_split_modules = _no_split_modules | set(module._no_split_modules)
            modules_to_check += list(module.children())
    return _no_split_modules


def fsdp_auto_wrap_policy(model):
    if hasattr(FullyShardedDataParallelPlugin, "get_module_class_from_name"):
        get_module_class_from_name = FullyShardedDataParallelPlugin.get_module_class_from_name
    else:
        from accelerate.utils.dataclasses import get_module_class_from_name
    from torch.distributed.fsdp.wrap import _or_policy, lambda_auto_wrap_policy, transformer_auto_wrap_policy

    from ..tuners import PrefixEncoder, PromptEmbedding, PromptEncoder

    default_transformer_cls_names_to_wrap = ",".join(_get_no_split_modules(model))
    transformer_cls_names_to_wrap = os.environ.get(
        "FSDP_TRANSFORMER_CLS_TO_WRAP", default_transformer_cls_names_to_wrap
    ).split(",")
    transformer_cls_to_wrap = {PrefixEncoder, PromptEncoder, PromptEmbedding}
    for layer_class in transformer_cls_names_to_wrap:
        if len(layer_class) == 0:
            continue
        transformer_cls = get_module_class_from_name(model, layer_class)
        if transformer_cls is None:
            raise Exception("Could not find the transformer layer class to wrap in the model.")
        else:
            transformer_cls_to_wrap.add(transformer_cls)

    def lambda_policy_fn(module):
        if (
            len(list(module.named_children())) == 0
            and getattr(module, "weight", None) is not None
            and module.weight.requires_grad
        ):
            return True
        return False

    lambda_policy = functools.partial(lambda_auto_wrap_policy, lambda_fn=lambda_policy_fn)
    transformer_wrap_policy = functools.partial(
        transformer_auto_wrap_policy,
        transformer_layer_cls=transformer_cls_to_wrap,
    )

    auto_wrap_policy = functools.partial(_or_policy, policies=[lambda_policy, transformer_wrap_policy])
    return auto_wrap_policy


def transpose(weight, fan_in_fan_out):
    if not fan_in_fan_out:
        return weight

    if isinstance(weight, torch.nn.Parameter):
        return torch.nn.Parameter(weight.T)
    return weight.T


def _is_valid_match(key: str, target_key: str):
    """
    Helper function to match module names target_key and key. Makes sure that either the key is exactly the target_key
    or the target_key is a submodule of key
    """
    if key.endswith(target_key):
        if len(key) > len(target_key):
            return key.endswith("." + target_key)  # must be a sub module
        return True
    return False


def _get_batch_size(input_ids: Optional[torch.Tensor], inputs_embeds: Optional[torch.Tensor]) -> int:
    """Get the batch size based on either input_ids or input_embeds

    Raises an ValueError if both are None.

    """
    if (input_ids is None) and (inputs_embeds is None):
        raise ValueError("You have to provide either input_ids or inputs_embeds")

    if input_ids is not None:
        batch_size = input_ids.shape[0]
    else:
        batch_size = inputs_embeds.shape[0]
    return batch_size


def get_quantization_config(model: torch.nn.Module, method: str):
    """
    Get the quantization config of the related quantization method
    """
    if (
        hasattr(model, "config")
        and hasattr(model.config, "quantization_config")
        and (getattr(model, "quantization_method", None) == method)
    ):
        return model.config.quantization_config
    return None


def get_auto_gptq_quant_linear(gptq_quantization_config):
    """
    Get the right AutoGPTQQuantLinear class based on the quantization config file
    """
    if gptq_quantization_config is None:
        return None

    if is_auto_gptq_available():
        from auto_gptq.utils.import_utils import dynamically_import_QuantLinear
    else:
        return None

    desc_act = gptq_quantization_config.desc_act
    group_size = gptq_quantization_config.group_size
    bits = gptq_quantization_config.bits
    if hasattr(gptq_quantization_config, "use_exllama"):
        use_exllama = gptq_quantization_config.use_exllama
    else:
        use_exllama = not gptq_quantization_config.disable_exllama
    if hasattr(gptq_quantization_config, "exllama_config"):
        exllama_version = gptq_quantization_config.exllama_config["version"]
    else:
        exllama_version = 1

    QuantLinear = dynamically_import_QuantLinear(
        use_triton=False,
        desc_act=desc_act,
        group_size=group_size,
        bits=bits,
        disable_exllama=not (use_exllama and exllama_version == 1),
        disable_exllamav2=not (use_exllama and exllama_version == 2),
    )

    return QuantLinear


def get_gptqmodel_quant_linear(gptq_quantization_config, device_map=None):
    """
    Get the right GPTQQuantLinear class based on the quantization config file
    """
    if gptq_quantization_config is None:
        return None

    if not is_gptqmodel_available():
        return None

    from gptqmodel.utils.importer import hf_select_quant_linear

    desc_act = gptq_quantization_config.desc_act
    group_size = gptq_quantization_config.group_size
    bits = gptq_quantization_config.bits
    checkpoint_format = (
        gptq_quantization_config.checkpoint_format
        if hasattr(gptq_quantization_config, "checkpoint_format")
        else "gptq"
    )
    sym = gptq_quantization_config.sym
    meta = gptq_quantization_config.meta if hasattr(gptq_quantization_config, "meta") else None

    QuantLinear = hf_select_quant_linear(
        bits=bits,
        group_size=group_size,
        desc_act=desc_act,
        sym=sym,
        device_map=device_map,
        checkpoint_format=checkpoint_format,
        meta=meta,
        backend="auto_trainable",
    )

    return QuantLinear


def id_tensor_storage(tensor: torch.Tensor) -> tuple[torch.device, int, int]:
    """
    Unique identifier to a tensor storage. Multiple different tensors can share the same underlying storage. For
    example, "meta" tensors all share the same storage, and thus their identifier will all be equal. This identifier is
    guaranteed to be unique and constant for this tensor's storage during its lifetime. Two tensor storages with
    non-overlapping lifetimes may have the same id.

    This method is the exact same copy of
    https://github.com/huggingface/transformers/blob/main/src/transformers/pytorch_utils.py#L282C1-L300C58 but we added
    it here manually to avoid import issue with old versions of transformers.
    """
    if tensor.device.type == "xla" and is_torch_tpu_available():
        # NOTE: xla tensors dont have storage
        # use some other unique id to distinguish.
        # this is a XLA tensor, it must be created using torch_xla's
        # device. So the following import is safe:
        import torch_xla

        unique_id = torch_xla._XLAC._xla_get_tensor_id(tensor)
    else:
        unique_id = storage_ptr(tensor)

    return tensor.device, unique_id, storage_size(tensor)


def cast_mixed_precision_params(model, dtype):
    """
    Cast all non-trainable parameters of the model to the given `dtype`. The `dtype` can be `torch.float16` or
    `torch.bfloat16` as per the mixed-precision training you are performing. The trainable parameters are cast to full
    precision. This is meant to reduce the GPU memory usage when using PEFT methods by using half-precision dtype for
    non-trainable parameters. Having the trainable parameters in full-precision preserves training stability when using
    automatic mixed-precision training.

    Args:
        model (`torch.nn.Module`):
            The model to cast the non-trainable parameters of.
        dtype (`torch.dtype`):
            The dtype to cast the non-trainable parameters to. The `dtype` can be `torch.float16` or
    `torch.bfloat16` as per the mixed-precision training you are performing.
    """
    for p in model.parameters():
        if not p.requires_grad:
            p.data = p.to(dtype)
        else:
            p.data = p.to(torch.float32)


def str_to_bool(value: str) -> int:
    """
    Converts a string representation of truth to `True` (1) or `False` (0).

    True values are `y`, `yes`, `t`, `true`, `on`, and `1`; False value are `n`, `no`, `f`, `false`, `off`, and `0`;
    """
    # same as function as in accelerate.utils, which replaces the deprecated distutils.util.strtobool
    value = value.lower()
    if value in ("y", "yes", "t", "true", "on", "1"):
        return 1
    elif value in ("n", "no", "f", "false", "off", "0"):
        return 0
    else:
        raise ValueError(f"invalid truth value {value}")


def check_file_exists_on_hf_hub(repo_id: str, filename: str, **kwargs) -> Optional[bool]:
    """Check if a file exists on HF Hub, if check was not successful returns None instead of erroring.

    Respect offline mode if set.

    """
    exists: Optional[bool] = None
    if str_to_bool(os.environ.get("HF_HUB_OFFLINE", "0")):
        # user set offline mode, cannot check
        return exists

    try:
        exists = file_exists(repo_id, filename, **kwargs)
    except (HFValidationError, EntryNotFoundError):
        # error, exists stays None
        pass
    except Exception as e:
        warnings.warn(
            f"Unable to fetch remote file due to the following error {e} - silently ignoring the lookup"
            f" for the file {filename} in {repo_id}."
        )

    return exists


def match_target_against_key(target_pattern: str, key: str):
    """Backing function for `target_modules` config parameter.

    Having this as its own function ensures that target key matching can be implemented in the same way everywhere.
    """
    return re.fullmatch(target_pattern, key)


def get_pattern_key(pattern_keys: Sequence[str], key_to_match: str) -> str:
    """Match a substring of key_to_match in pattern keys"""
    for key in pattern_keys:
        match = re.match(rf"(.*\.)?({key})$", key_to_match)
        if not match:
            continue
        return key

    return key_to_match


def set_additional_trainable_modules(model, peft_config, model_config, adapter_name, activate_adapter: bool = True):
    """Handle the resolution of additional trainable modules (also called AuxiliaryTrainingWrapper)
    by checking the config if such modules are requested and adding them to the model.

    Currently trainable tokens and modules to save are considered additional trainable modules.

    If `activate_adapter` is set to `False`, the adapter won't be activated. This is typically the case when
    `model.add_adapter` or `model.load_adapter` are being called.
    """
    if getattr(peft_config, "modules_to_save", None) is not None:
        # this may add a new ModulesToSaveWrapper
        _set_trainable(
            model,
            adapter_name,
            inference_mode=peft_config.inference_mode,
            module_names=getattr(peft_config, "modules_to_save", None),
            activate_adapter=activate_adapter,
        )

    if getattr(peft_config, "trainable_token_indices", None) is not None:
        if isinstance(peft_config.trainable_token_indices, dict):
            target_layers = peft_config.trainable_token_indices
        else:
            layer_name = _get_input_embeddings_name(model, "embed_tokens")
            target_layers = {layer_name: peft_config.trainable_token_indices}

        modules_to_save = getattr(peft_config, "modules_to_save", None)
        if modules_to_save is not None:
            for target_layer in target_layers:
                if target_layer in modules_to_save:
                    raise ValueError(
                        "The embedding layer is already marked to be trained fully, either specify "
                        f'`modules_to_save=[..., "{target_layer}", ...]` or '
                        f"`trainable_tokens={{'{target_layer}': x}}` but not both."
                    )

        for target_layer, token_indices in target_layers.items():
            _set_trainable(
                model,
                adapter_name,
                inference_mode=peft_config.inference_mode,
                module_names=[target_layer],
                strict_module_check=True,
                wrapper_cls=TrainableTokensWrapper,
                token_indices=token_indices,
                activate_adapter=activate_adapter,
            )

        # There might be the possibility that we have output weights that are tied to the input weights.
        # In that case we will tie any module that wants tied weights to the token adapter to make sure that
        # any modification is reflected in the tied layers as well.
        if (
            model_config.get("tie_word_embeddings", False)
            # some models may be misconfigured to have weight tying enabled but don't define tied weights keys
            and model._tied_weights_keys is not None
            and isinstance(model.get_input_embeddings(), TrainableTokensWrapper)
        ):
            # the embedding layer is modified and we want weight tying.
            module_keys = [".".join(n.split(".")[:-1]) for n in model._tied_weights_keys]

            token_adapter = model.get_input_embeddings().token_adapter
            _set_trainable(
                model,
                adapter_name,
                inference_mode=peft_config.inference_mode,
                module_names=module_keys,
                strict_module_check=True,
                wrapper_cls=TrainableTokensWrapper,
                token_indices=token_adapter.token_indices[adapter_name],
                tied_adapter=model.get_input_embeddings().token_adapter,
            )


def create_attention_mask(
    model, *, model_input, attention_mask, past_key_values, cache_position, batch_size, sequence_length, position_ids
):
    # adapted from:
    # https://github.com/huggingface/transformers/blob/cb4c56ce0dfa1350267ed28e57760986a58a9ba4/src/transformers/generation/utils.py#L644-L680
    # In PEFT, we sometimes need to re-create the attention mask. This is because some prompt learning methods insert
    # new items into the sequence, which results in the attention mask needing an update. We re-use transformers code
    # for this as much as possible.
    transformers_ge_4_53_1 = version.parse(transformers.__version__) >= version.parse("4.53.1")
    if transformers_ge_4_53_1:
        # the function already exists in v4.53.0 but has a different signature, so we check for 4.53.1
        from transformers.masking_utils import create_masks_for_generate
    else:
        raise ImportError("Your transformers version is too old, please upgrade it to >= 4.53.1")

    # Create the causal mask with fixed shape in advance, to reduce recompilations. If the function to create
    # the 4D causal mask exists, it should be present in the base model (XXXModel class) or in its decoder.
    base_model = getattr(model, model.base_model_prefix, model)
    decoder = base_model.get_decoder() if hasattr(base_model, "get_decoder") else None
    causal_mask_creation_function = getattr(base_model, "_prepare_4d_causal_attention_mask_with_cache_position", None)
    if causal_mask_creation_function is None and decoder is not None:  # it may be in the decoder
        causal_mask_creation_function = getattr(decoder, "_prepare_4d_causal_attention_mask_with_cache_position", None)

    # If it's not defined, it means the model uses the new general mask API
    if causal_mask_creation_function is None:  # can't be found
        token_type_ids = getattr(model_input, "token_type_ids", None)
        # Some models may overwrite the general one
        causal_mask_creation_function = getattr(model, "create_masks_for_generate", create_masks_for_generate)
        attention_mask = causal_mask_creation_function(
            config=model.config,
            # we only need batch size, seq_length and dtype here - we don't care about the values of the embeddings
            input_embeds=torch.empty((batch_size, sequence_length), dtype=model.dtype),
            attention_mask=attention_mask,
            cache_position=cache_position,
            past_key_values=past_key_values,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
        )
    else:
        attention_mask = causal_mask_creation_function(
            attention_mask,
            sequence_length=sequence_length,
            target_length=past_key_values.get_max_cache_shape(),
            dtype=model.dtype,
            cache_position=cache_position,
            batch_size=batch_size,
            config=model.config,
            past_key_values=past_key_values,
            position_ids=position_ids,
        )
    return attention_mask