File size: 10,400 Bytes
302920f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
# Copyright 2023-present the HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import math
from typing import Optional, Union

import torch
import torch.nn as nn
import torch.nn.functional as F

from .config import TRANSFORMERS_MODEL_CONFIG


class _BaseAdaptedAttention(nn.Module):
    """Base module, which defines adaption prompts for multiple model types."""

    def __init__(self, model_type: str, adapter_len: int, model, target_dtype=torch.float32):
        """
        Initialize object.

        Args:
            model_type: The transformer model type. This is used to retrieve the right method to
                compute query states.
            adapter_len: The length of the adaption prompt to insert.
            model: The original transformer attention module that is being wrapped.
        """
        if isinstance(model, _BaseAdaptedAttention):
            raise ValueError("Unable to stack multiple adaption prompts")
        super().__init__()
        self.model_type = model_type
        self.model = model
        self.adapter_len = adapter_len
        # Assume all parameters of the attention model we are wrapping are on the same device.

        device = next(model.parameters()).device
        # Don't think this was specified in the paper, but we follow the official repo which used an Embedding
        # which initializes the tokens with standard normal values.
        # https://github.com/ZrrSkywalker/LLaMA-Adapter/blob/41c3546fe1997ab8a65809dc8d8f9252b19d9faf/llama/model.py#L234
        # (bsz, adapter_len, hidden_size)

        if hasattr(self.model, "hidden_size"):
            # TODO: remove this clause after 2026-01-01
            hidden_size = self.model.hidden_size
        else:  # changed in https://github.com/huggingface/transformers/pull/35235
            hidden_size = self.model.config.hidden_size

        if hasattr(self.model, "num_heads"):
            # TODO: remove this clause after 2026-01-01
            self.num_heads = self.model.num_heads
        else:  # changed in https://github.com/huggingface/transformers/pull/35235
            self.num_heads = self.model.config.num_attention_heads

        self.adaption_prompt = nn.Parameter(
            torch.empty(1, adapter_len, hidden_size, device=device, dtype=target_dtype).normal_()
        )
        # Initialize the gate to 0 as this is "zero-init".
        self.adaption_gate = nn.Parameter(torch.zeros(1, device=device, dtype=target_dtype))


class AdaptedAttentionGPT(_BaseAdaptedAttention):
    """This module wraps a GPT2Attention module and injects adaption prompts"""

    def __init__(self, model_type, adapter_len, model):
        target_dtype = (
            model.c_proj.weight.dtype if model.c_proj.weight.dtype not in [torch.int8, torch.uint8] else torch.float32
        )
        super().__init__(model_type, adapter_len, model, target_dtype=target_dtype)

    def forward(
        self,
        hidden_states: Optional[tuple[torch.FloatTensor]],
        layer_past: Optional[tuple[torch.Tensor]] = None,
        attention_mask: Optional[torch.FloatTensor] = None,
        head_mask: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.Tensor] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
        use_cache: Optional[bool] = False,
        output_attentions: Optional[bool] = False,
        **kwargs,
    ) -> tuple[Union[torch.Tensor, tuple[torch.Tensor]], ...]:
        attn_outputs = self.model(
            hidden_states=hidden_states,
            attention_mask=attention_mask,
            head_mask=head_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            use_cache=use_cache,
            output_attentions=output_attentions,
            **kwargs,
        )
        """
        Forward pass for the adapter which wraps the GPT2Attention module
        """

        attn_output = attn_outputs[0]
        add_outputs = attn_outputs[1:]

        c_attn_layer = TRANSFORMERS_MODEL_CONFIG[self.model_type].k_proj_layer

        bsz = attn_output.shape[0]
        q_len = attn_output.shape[1]
        embed_dim = attn_output.shape[2]

        _, key, value = getattr(self.model, c_attn_layer)(self.adaption_prompt).split(embed_dim, dim=2)

        adapter_k = (
            key.view(1, self.adapter_len, self.num_heads, self.model.head_dim).repeat(bsz, 1, 1, 1).transpose(1, 2)
        )
        adapter_v = (
            value.view(1, self.adapter_len, self.num_heads, self.model.head_dim).repeat(bsz, 1, 1, 1).transpose(1, 2)
        )
        # recompute query state since it is not returned by GPT2 forward
        compute_query_states = TRANSFORMERS_MODEL_CONFIG[self.model_type].compute_query_states
        query_states = compute_query_states(
            self.model, hidden_states=hidden_states, encoder_hidden_states=encoder_hidden_states
        )

        previous_dtype = query_states.dtype

        scores = torch.matmul(query_states, adapter_k.transpose(2, 3).to(previous_dtype)) / math.sqrt(
            self.model.head_dim
        )
        # Upcast attention to fp32
        # (bsz, num_heads, q_len, adapter_len)
        scores = self.adaption_gate * F.softmax(scores, dim=-1, dtype=torch.float32).to(previous_dtype)
        # (bsz, q_len, num_heads * head_dim)
        adapter_output = torch.matmul(scores, adapter_v).transpose(1, 2).reshape(bsz, q_len, -1)

        # Add adaption prompt output to original output.
        hidden_state = attn_output + adapter_output

        # Restore original dtype.
        hidden_state = hidden_state.to(previous_dtype)

        # add additional attention outputs (attention and cross attention)
        output = (hidden_state,) + add_outputs
        return output


class AdaptedAttention(_BaseAdaptedAttention):
    """This module wraps a LLamaAttention module and injects adaption prompts."""

    def __init__(self, model_type, adapter_len, model):
        target_dtype = (
            model.q_proj.weight.dtype if model.q_proj.weight.dtype not in [torch.int8, torch.uint8] else torch.float32
        )
        super().__init__(model_type, adapter_len, model, target_dtype=target_dtype)

    def forward(self, **kwargs):
        """
        Forward pass for the adapter which wraps the original LlamaAttention module.

        "Official" paper implementation:
        https://github.com/ZrrSkywalker/LLaMA-Adapter/blob/41c3546fe1997ab8a65809dc8d8f9252b19d9faf/llama/model.py#L141

        Args:
            kwargs: See the original LlamaAttention module.
        """
        if kwargs.get("output_attention", False):
            raise NotImplementedError("output_attention is not currently supported.")

        output, *_ = self.model(**kwargs)
        bsz = output.shape[0]
        q_len = output.shape[1]
        embed_dim = output.shape[2]
        k_proj_layer = TRANSFORMERS_MODEL_CONFIG[self.model_type].k_proj_layer
        v_proj_layer = TRANSFORMERS_MODEL_CONFIG[self.model_type].v_proj_layer
        o_proj_layer = TRANSFORMERS_MODEL_CONFIG[self.model_type].o_proj_layer
        factor = (
            self.model.k_proj.in_features // self.model.k_proj.out_features
        )  # Mistral has different input and output dimension for k_proj and v_proj layers

        if k_proj_layer == v_proj_layer:
            _, key, value = getattr(self.model, k_proj_layer)(self.adaption_prompt).split(embed_dim, dim=2)
        else:
            key = getattr(self.model, k_proj_layer)(self.adaption_prompt)
            value = getattr(self.model, v_proj_layer)(self.adaption_prompt)

        if hasattr(self.model, "num_heads"):
            # TODO: remove this clause after 2026-01-01
            num_heads = self.model.num_heads
        else:  # changed in https://github.com/huggingface/transformers/pull/35235
            num_heads = self.model.config.num_attention_heads
        # (bsz, num_key_value_heads, adapter_len, head_dim)
        adapter_k = (
            key.view(1, self.adapter_len, (num_heads // factor), self.model.head_dim)
            .repeat(bsz, 1, 1, 1)
            .transpose(1, 2)
        )
        adapter_v = (
            value.view(1, self.adapter_len, (num_heads // factor), self.model.head_dim)
            .repeat(bsz, 1, 1, 1)
            .transpose(1, 2)
        )
        # Below is taken from https://github.com/huggingface/transformers/blob/e547458c43dfdbbb8f6a7757237e234c44e20a8f/src/transformers/models/mistral/modeling_mistral.py#L181
        # (bsz, num_heads, adapter_len, head_dim)
        adapter_k = torch.repeat_interleave(adapter_k, repeats=factor, dim=1)
        adapter_v = torch.repeat_interleave(adapter_v, repeats=factor, dim=1)
        # Recompute query states.
        compute_query_states = TRANSFORMERS_MODEL_CONFIG[self.model_type].compute_query_states
        # (bsz, num_heads, q_len, head_dim)
        query_states = compute_query_states(model=self.model, **kwargs)

        previous_dtype = query_states.dtype

        # (bsz, num_heads, q_len, adapter_len)
        scores = torch.matmul(query_states, adapter_k.transpose(2, 3).to(previous_dtype)) / math.sqrt(
            self.model.head_dim
        )
        # Upcast attention to fp32
        # (bsz, num_heads, q_len, adapter_len)
        scores = self.adaption_gate * F.softmax(scores, dim=-1, dtype=torch.float32).to(previous_dtype)
        # (bsz, q_len, num_heads * head_dim)
        adapter_output = torch.matmul(scores, adapter_v).transpose(1, 2).reshape(bsz, q_len, -1)

        # (bsz, q_len, hidden_size)
        if o_proj_layer is not None:
            adapter_output = getattr(self.model, o_proj_layer)(adapter_output)

        # Add adaption prompt output to original output.
        output = output + adapter_output

        # Restore original dtype.
        output = output.to(previous_dtype)
        return output, *_