Spaces:
Running
Running
File size: 5,728 Bytes
c71be5c 08448e8 c71be5c 91b021f c7a91bb 2398560 c7e3111 74c9f1a c0cf7b8 c7e3111 c71be5c a5d193f c71be5c d1304c6 c71be5c 08448e8 a5d193f c71be5c a5d193f e706bd8 08448e8 1819fdd da6beb0 a5d193f c0cf7b8 aba96da cad36dc aba96da 08448e8 25e99e3 4313a99 307204c aaff5ae 4313a99 30e3fcc d3db3bd 4313a99 d3db3bd 4313a99 4186c91 22855ab 4186c91 22855ab 4313a99 c71be5c a5d193f 8b25e9d c71be5c 8b25e9d a5d193f cb8fe28 a5d193f ade23b0 a5d193f c71be5c a5d193f c71be5c a5d193f ade23b0 a5d193f c71be5c a5d193f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 |
import gradio as gr
from sentence_transformers import SentenceTransformer
from huggingface_hub import InferenceClient
import pandas as pd
import torch
import math
import httpcore
import pickle
import time
setattr(httpcore, 'SyncHTTPTransport', 'AsyncHTTPProxy')
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
model = SentenceTransformer('intfloat/multilingual-e5-large-instruct')
def get_detailed_instruct(task_description: str, query: str) -> str:
return f'Instruct: {task_description}\nQuery: {query}'
def respond(
message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": "You are a sunni moslem bot that always give answer based on quran, hadith, and the companions of prophet Muhammad!"}]
#make a moslem bot
messages.append({"role": "user", "content": "I want you to answer strictly based on quran and hadith"})
messages.append({"role": "assistant", "content": "I'd be happy to help! Please go ahead and provide the sentence you'd like me to analyze. Please specify whether you're referencing a particular verse or hadith (Prophetic tradition) from the Quran or Hadith, or if you're asking me to analyze a general statement."})
#adding fatwa references
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
selected_references = torch.load('selected_references.sav', map_location=torch.device(device))
encoded_questions = torch.load('encoded_questions.sav', map_location=torch.device(device))
task = 'Given a web search query, retrieve relevant passages that answer the query'
queries = [
get_detailed_instruct(task, message)
]
print("start\n")
print(time.time())
query_embeddings = model.encode(queries, convert_to_tensor=True, normalize_embeddings=True)
scores = (query_embeddings @ encoded_questions.T) * 100
selected_references['similarity'] = scores.tolist()[0]
sorted_references = selected_references.sort_values(by='similarity', ascending=False)
sorted_references = sorted_references.iloc[:1]
sorted_references = sorted_references.sort_values(by='similarity', ascending=True)
print(sorted_references.shape[0])
print(sorted_references['similarity'].tolist())
print("sorted references\n")
print(time.time())
from googletrans import Translator
translator = Translator()
for index, row in sorted_references.iterrows():
if(type(row["user"]) is str and type(row['assistant']) is str):
try:
translator = Translator()
print(index)
print(f'{row["user"]}')
translated = translator.translate(f'{row["user"]}', src='ar', dest='en')
print(translated)
user = translated.text
print(user)
assistant = translator.translate(row['assistant']).text
messages.append({"role": "user", "content":user })
messages.append({"role": "assistant", "content": assistant})
except Exception as error:
print("1. An error occurred:", error)
print("adding fatwa references exception occurred")
print("append references\n")
print(time.time())
#adding more references
df = pd.read_csv("moslem-bot-reference.csv", sep='|')
for index, row in df.iterrows():
messages.append({"role": "user", "content": row['user']})
messages.append({"role": "assistant", "content": row['assistant']})
#latest user question
translator = Translator()
en_message = ""
message_language = "en"
print("===message===")
print(message)
print("============")
try:
translator = Translator()
print(translator.detect(message))
message_language = translator.detect(message).lang
print(message_language)
print(translator.translate(message))
en_message = translator.translate(message).text
messages.append({"role": "user", "content": en_message})
except Exception as error:
messages.append({"role": "user", "content": message})
print("An error occurred:", error)
print("en_message exception occurred")
response = ""
for message in client.chat_completion(
messages,
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
):
token = message.choices[0].delta.content
response += token
translated_response = translator.translate(response, src='en', dest=message_language).text
if(len(translated_response)>0):
yield translated_response
else:
yield response
"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.Interface(
respond,
additional_inputs=[
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p (nucleus sampling)",
),
],
inputs="textbox",
outputs="textbox",
cache_examples="lazy",
examples=[
["Why is men created?"],
["Please tell me about superstition!"],
["How moses defeat pharaoh?"],
],
)
if __name__ == "__main__":
demo.launch() |