File size: 5,728 Bytes
c71be5c
08448e8
c71be5c
91b021f
c7a91bb
2398560
c7e3111
74c9f1a
c0cf7b8
c7e3111
c71be5c
a5d193f
 
 
c71be5c
d1304c6
c71be5c
08448e8
a5d193f
c71be5c
a5d193f
 
 
 
 
 
 
e706bd8
08448e8
1819fdd
da6beb0
a5d193f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c0cf7b8
aba96da
cad36dc
aba96da
 
 
08448e8
 
25e99e3
4313a99
307204c
aaff5ae
 
 
4313a99
30e3fcc
d3db3bd
4313a99
 
d3db3bd
4313a99
4186c91
22855ab
4186c91
22855ab
4313a99
c71be5c
 
a5d193f
8b25e9d
 
 
 
 
 
 
 
c71be5c
8b25e9d
a5d193f
 
 
 
 
cb8fe28
a5d193f
 
 
 
 
ade23b0
a5d193f
c71be5c
a5d193f
c71be5c
 
 
 
 
 
 
 
a5d193f
ade23b0
 
 
 
 
 
 
 
a5d193f
 
 
c71be5c
a5d193f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import gradio as gr
from sentence_transformers import SentenceTransformer
from huggingface_hub import InferenceClient
import pandas as pd
import torch
import math
import httpcore
import pickle
import time
setattr(httpcore, 'SyncHTTPTransport', 'AsyncHTTPProxy')

"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
model = SentenceTransformer('intfloat/multilingual-e5-large-instruct')

def get_detailed_instruct(task_description: str, query: str) -> str:
    return f'Instruct: {task_description}\nQuery: {query}'


def respond(
    message,
    max_tokens,
    temperature,
    top_p,
):
    messages = [{"role": "system", "content": "You are a sunni moslem bot that always give answer based on quran, hadith, and the companions of prophet Muhammad!"}]
    #make a moslem bot
    messages.append({"role": "user", "content": "I want you to answer strictly based on quran and hadith"})
    messages.append({"role": "assistant", "content": "I'd be happy to help! Please go ahead and provide the sentence you'd like me to analyze. Please specify whether you're referencing a particular verse or hadith (Prophetic tradition) from the Quran or Hadith, or if you're asking me to analyze a general statement."})

    #adding fatwa references
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    selected_references = torch.load('selected_references.sav', map_location=torch.device(device))
    encoded_questions = torch.load('encoded_questions.sav', map_location=torch.device(device))
    
    task = 'Given a web search query, retrieve relevant passages that answer the query'
    queries = [
        get_detailed_instruct(task, message)
    ]
    print("start\n")
    print(time.time())

    query_embeddings = model.encode(queries, convert_to_tensor=True, normalize_embeddings=True)
    scores = (query_embeddings @ encoded_questions.T) * 100
    selected_references['similarity'] = scores.tolist()[0]
    sorted_references = selected_references.sort_values(by='similarity', ascending=False)
    sorted_references = sorted_references.iloc[:1]
    sorted_references = sorted_references.sort_values(by='similarity', ascending=True)
    print(sorted_references.shape[0])
    print(sorted_references['similarity'].tolist())
    print("sorted references\n")
    print(time.time())

    from googletrans import Translator
    translator = Translator()
    
    for index, row in sorted_references.iterrows():
        if(type(row["user"]) is str and type(row['assistant']) is str):
            try:
                translator = Translator()
                print(index)
                print(f'{row["user"]}')
                translated = translator.translate(f'{row["user"]}', src='ar', dest='en')
                print(translated)
                user = translated.text
                print(user)
                assistant = translator.translate(row['assistant']).text
                messages.append({"role": "user", "content":user })
                messages.append({"role": "assistant", "content": assistant})
            except Exception as error:
                print("1. An error occurred:", error)
                print("adding fatwa references exception occurred")
    
    print("append references\n")
    print(time.time())
    
    #adding more references
    df = pd.read_csv("moslem-bot-reference.csv", sep='|')
    for index, row in df.iterrows():
        messages.append({"role": "user", "content": row['user']})
        messages.append({"role": "assistant", "content": row['assistant']})

    #latest user question
    translator = Translator()
    en_message = ""
    message_language = "en"
    print("===message===")
    print(message)
    print("============")
    try:
        translator = Translator()
        print(translator.detect(message))
        message_language = translator.detect(message).lang
        print(message_language)
        print(translator.translate(message))
        en_message = translator.translate(message).text
        messages.append({"role": "user", "content": en_message})
    except Exception as error:
        messages.append({"role": "user", "content": message})
        print("An error occurred:", error)
        print("en_message exception occurred")

    response = ""

    for message in client.chat_completion(
        messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        token = message.choices[0].delta.content

        response += token

        translated_response = translator.translate(response, src='en', dest=message_language).text
        if(len(translated_response)>0):
            yield translated_response
        else:
            yield response


"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.Interface(
    respond,
    additional_inputs=[
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
    ],
    inputs="textbox", 
    outputs="textbox",   
    cache_examples="lazy",
    examples=[
                ["Why is men created?"],
                ["Please tell me about superstition!"],
                ["How moses defeat pharaoh?"],
            ],
)


if __name__ == "__main__":
    demo.launch()