File size: 6,666 Bytes
c71be5c
08448e8
c71be5c
91b021f
c7a91bb
2398560
c7e3111
74c9f1a
c0cf7b8
c7e3111
c71be5c
 
d1304c6
c71be5c
08448e8
 
c71be5c
291088b
6f9b7ab
60c7d45
 
291088b
08448e8
7618247
c71be5c
08448e8
1819fdd
da6beb0
 
aba96da
4128a7d
d065dd0
 
08448e8
 
 
 
 
c0cf7b8
 
08448e8
 
 
 
 
476fb9f
dba6b3f
50eff43
aba96da
c0cf7b8
 
08448e8
 
 
 
 
c8df060
 
30e3fcc
c8df060
 
74c9f1a
 
 
c8df060
 
 
 
22855ab
 
 
233772e
c0cf7b8
4128a7d
c0cf7b8
aba96da
cad36dc
aba96da
 
 
e349a36
c0cf7b8
 
 
08448e8
9278930
08448e8
 
 
 
 
9278930
08448e8
 
25e99e3
 
4313a99
307204c
aaff5ae
 
 
4313a99
30e3fcc
d3db3bd
4313a99
 
d3db3bd
4313a99
4186c91
22855ab
4186c91
22855ab
4313a99
4186c91
447241c
c0cf7b8
 
c71be5c
 
 
 
 
 
 
 
 
 
0fa7c3e
eff9c08
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3fb3937
 
 
 
 
 
22855ab
 
cb8fe28
291088b
 
 
c71be5c
966bb6b
c71be5c
 
 
 
 
 
 
 
a1544d7
291088b
 
a03361f
02dcacd
53a2ee3
4684ca5
fee6eca
02dcacd
291088b
 
c71be5c
291088b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import gradio as gr
from sentence_transformers import SentenceTransformer
from huggingface_hub import InferenceClient
import pandas as pd
import torch
import math
import httpcore
import pickle
import time
setattr(httpcore, 'SyncHTTPTransport', 'AsyncHTTPProxy')

client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
model = SentenceTransformer('intfloat/multilingual-e5-large-instruct')

def get_detailed_instruct(task_description: str, query: str) -> str:
        return f'Instruct: {task_description}\nQuery: {query}'

def respond(message,
    max_tokens = 2048,
    temperature = 0.7,
    top_p = 0.95,
    ):
    #system role
    messages = [{"role": "system", "content": "You are a sunni moslem bot that always give answer based on quran, hadith, and the companions of prophet Muhammad!"}]

    #make a moslem bot
    messages.append({"role": "user", "content": "I want you to answer strictly based on quran and hadith"})
    messages.append({"role": "assistant", "content": "I'd be happy to help! Please go ahead and provide the sentence you'd like me to analyze. Please specify whether you're referencing a particular verse or hadith (Prophetic tradition) from the Quran or Hadith, or if you're asking me to analyze a general statement."})

    #adding fatwa references
    '''device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    selected_references = torch.load('selected_references.sav', map_location=torch.device(device))
    encoded_questions = torch.load('encoded_questions.sav', map_location=torch.device(device))
    
    task = 'Given a web search query, retrieve relevant passages that answer the query'
    queries = [
        get_detailed_instruct(task, message)
    ]
    print("start\n")
    print(time.time())

    query_embeddings = model.encode(queries, convert_to_tensor=True, normalize_embeddings=True)
    scores = (query_embeddings @ encoded_questions.T) * 100
    selected_references['similarity'] = scores.tolist()[0]
    sorted_references = selected_references.sort_values(by='similarity', ascending=False)
    sorted_references = sorted_references.iloc[:1]
    sorted_references = sorted_references.sort_values(by='similarity', ascending=True)
    print(sorted_references.shape[0])
    print(sorted_references['similarity'].tolist())
    print("sorted references\n")
    print(time.time())

    from googletrans import Translator
    translator = Translator()
    
    for index, row in sorted_references.iterrows():
        if(type(row["user"]) is str and type(row['assistant']) is str):
            try:
                translator = Translator()
                print(index)
                print(f'{row["user"]}')
                translated = translator.translate(f'{row["user"]}', src='ar', dest='en')
                print(translated)
                user = translated.text
                print(user)
                assistant = translator.translate(row['assistant']).text
                messages.append({"role": "user", "content":user })
                messages.append({"role": "assistant", "content": assistant})
            except Exception as error:
                print("An error occurred:", error)
                print("adding fatwa references exception occurred")
    
    print("append references\n")
    print(time.time())'''
    
    #adding more references
    df = pd.read_csv("moslem-bot-reference.csv", sep='|')
    for index, row in df.iterrows():
        messages.append({"role": "user", "content": row['user']})
        messages.append({"role": "assistant", "content": row['assistant']})
    
    print("added more references\n")
    print(time.time())
    
    #history from chat session
    """
    for val in history:
        if val[0]:
            messages.append({"role": "user", "content": val[0]})
        if val[1]:
            messages.append({"role": "assistant", "content": val[1]})
    """

    #latest user question
    from googletrans import Translator
    translator = Translator()
    en_message = ""
    message_language = "en"
    print("===message===")
    print(message)
    print("============")
    try:
        translator = Translator()
        print(translator.detect(message))
        message_language = translator.detect(message).lang
        print(message_language)
        print(translator.translate(message))
        en_message = translator.translate(message).text
        messages.append({"role": "user", "content": en_message})
    except Exception as error:
        messages.append({"role": "user", "content": message})
        print("An error occurred:", error)
        print("en_message exception occurred")
    
    print(messages)
    print("added last question\n")
    print(time.time())

    response = ""

    for message in client.chat_completion(
        messages,
        max_tokens=max_tokens,
        stream=True,
        temperature=temperature,
        top_p=top_p,
    ):
        try:
            print("cek1")
            if(message):
                print("cek2")
                if len(message.choices)>0:
                    print("cek3")
                    token = message.choices[0].delta.content
                    response += token
                    if(len(response)>0):
                        print("cek4")
                        translated = translator.translate(response, src='en', dest=message_language)
                        if not (translated is None):
                            print("cek5")
                            translated_response = translated.text
                            yield translated_response
                        else:
                            yield response
                    else:
                        yield response
                else:
                    yield response
            else:
                yield response
        except Exception as error:
            print("An error occurred:", error)
            yield response
    
demo = gr.Interface(
    fn=respond,
    additional_inputs=[
        gr.Slider(minimum=1, maximum=2048, value=2048, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(
            minimum=0.1,
            maximum=1.0,
            value=0.95,
            step=0.05,
            label="Top-p (nucleus sampling)",
        ),
    ], 
    inputs="textbox", 
    outputs="textbox",  
    cache_examples=True,
    examples=[
                ["Why is men created?"],
                ["Please tell me about superstition!"],
                ["How moses defeat pharaoh?"],
            ],
    title="Moslem Bot")
    
if __name__ == "__main__":
    demo.launch()