Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,245 Bytes
99738e0 3f294af 99738e0 8a00db9 99738e0 80c1007 453bd9c 99738e0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 |
from PIL import Image, ExifTags
import numpy as np
import torch
from torch import Tensor
from einops import rearrange
import uuid
import os
from src.flux.modules.layers import (
SingleStreamBlockProcessor,
DoubleStreamBlockProcessor,
SingleStreamBlockLoraProcessor,
DoubleStreamBlockLoraProcessor,
IPDoubleStreamBlockProcessor,
ImageProjModel,
)
from src.flux.sampling import denoise, denoise_controlnet, get_noise, get_schedule, prepare, unpack
from src.flux.util import (
load_ae,
load_clip,
load_flow_model,
load_t5,
load_controlnet,
load_flow_model_quintized,
Annotator,
get_lora_rank,
load_checkpoint
)
from transformers import CLIPVisionModelWithProjection, CLIPImageProcessor
class XFluxPipeline:
def __init__(self, model_type, device, offload: bool = False):
self.device = torch.device(device)
self.offload = offload
self.model_type = model_type
self.clip = load_clip(self.device)
self.t5 = load_t5(self.device, max_length=512)
self.ae = load_ae(model_type, device="cpu" if offload else self.device)
if "fp8" in model_type:
self.model = load_flow_model_quintized(model_type, device="cpu" if offload else self.device)
else:
self.model = load_flow_model(model_type, device="cpu" if offload else self.device)
self.image_encoder_path = "openai/clip-vit-large-patch14"
self.hf_lora_collection = "XLabs-AI/flux-lora-collection"
self.lora_types_to_names = {
"realism": "lora.safetensors",
}
self.controlnet_loaded = False
self.ip_loaded = False
self.spatial_condition = False
self.share_position_embedding = False
self.use_share_weight_referencenet = False
self.single_block_refnet = False
self.double_block_refnet = False
def set_ip(self, local_path: str = None, repo_id = None, name: str = None):
self.model.to(self.device)
# unpack checkpoint
checkpoint = load_checkpoint(local_path, repo_id, name)
prefix = "double_blocks."
blocks = {}
proj = {}
for key, value in checkpoint.items():
if key.startswith(prefix):
blocks[key[len(prefix):].replace('.processor.', '.')] = value
if key.startswith("ip_adapter_proj_model"):
proj[key[len("ip_adapter_proj_model."):]] = value
# load image encoder
self.image_encoder = CLIPVisionModelWithProjection.from_pretrained(self.image_encoder_path).to(
self.device, dtype=torch.float16
)
self.clip_image_processor = CLIPImageProcessor()
# setup image embedding projection model
self.improj = ImageProjModel(4096, 768, 4)
self.improj.load_state_dict(proj)
self.improj = self.improj.to(self.device, dtype=torch.bfloat16)
ip_attn_procs = {}
for name, _ in self.model.attn_processors.items():
ip_state_dict = {}
for k in checkpoint.keys():
if name in k:
ip_state_dict[k.replace(f'{name}.', '')] = checkpoint[k]
if ip_state_dict:
ip_attn_procs[name] = IPDoubleStreamBlockProcessor(4096, 3072)
ip_attn_procs[name].load_state_dict(ip_state_dict)
ip_attn_procs[name].to(self.device, dtype=torch.bfloat16)
else:
ip_attn_procs[name] = self.model.attn_processors[name]
self.model.set_attn_processor(ip_attn_procs)
self.ip_loaded = True
def set_lora(self, local_path: str = None, repo_id: str = None,
name: str = None, lora_weight: int = 0.7):
checkpoint = load_checkpoint(local_path, repo_id, name)
self.update_model_with_lora(checkpoint, lora_weight)
def set_lora_from_collection(self, lora_type: str = "realism", lora_weight: int = 0.7):
checkpoint = load_checkpoint(
None, self.hf_lora_collection, self.lora_types_to_names[lora_type]
)
self.update_model_with_lora(checkpoint, lora_weight)
def update_model_with_lora(self, checkpoint, lora_weight):
rank = get_lora_rank(checkpoint)
lora_attn_procs = {}
for name, _ in self.model.attn_processors.items():
lora_state_dict = {}
for k in checkpoint.keys():
if name in k:
lora_state_dict[k[len(name) + 1:]] = checkpoint[k] * lora_weight
if len(lora_state_dict):
if name.startswith("single_blocks"):
lora_attn_procs[name] = SingleStreamBlockLoraProcessor(dim=3072, rank=rank)
else:
lora_attn_procs[name] = DoubleStreamBlockLoraProcessor(dim=3072, rank=rank)
lora_attn_procs[name].load_state_dict(lora_state_dict)
lora_attn_procs[name].to(self.device)
else:
if name.startswith("single_blocks"):
lora_attn_procs[name] = SingleStreamBlockProcessor()
else:
lora_attn_procs[name] = DoubleStreamBlockProcessor()
self.model.set_attn_processor(lora_attn_procs)
def set_controlnet(self, control_type: str, local_path: str = None, repo_id: str = None, name: str = None):
self.model.to(self.device)
self.controlnet = load_controlnet(self.model_type, self.device).to(torch.bfloat16)
checkpoint = load_checkpoint(local_path, repo_id, name)
self.controlnet.load_state_dict(checkpoint, strict=False)
self.annotator = Annotator(control_type, self.device)
self.controlnet_loaded = True
self.control_type = control_type
def get_image_proj(
self,
image_prompt: Tensor,
):
# encode image-prompt embeds
image_prompt = self.clip_image_processor(
images=image_prompt,
return_tensors="pt"
).pixel_values
image_prompt = image_prompt.to(self.image_encoder.device)
image_prompt_embeds = self.image_encoder(
image_prompt
).image_embeds.to(
device=self.device, dtype=torch.bfloat16,
)
# encode image
image_proj = self.improj(image_prompt_embeds)
return image_proj
def __call__(self,
prompt: str,
image_prompt: Image = None,
source_image: Tensor = None,
controlnet_image: Image = None,
width: int = 512,
height: int = 512,
guidance: float = 4,
num_steps: int = 50,
seed: int = 123456789,
true_gs: float = 3.5, # 3
control_weight: float = 0.9,
ip_scale: float = 1.0,
neg_ip_scale: float = 1.0,
neg_prompt: str = '',
neg_image_prompt: Image = None,
timestep_to_start_cfg: int = 1, # 0
):
width = 16 * (width // 16)
height = 16 * (height // 16)
image_proj = None
neg_image_proj = None
if not (image_prompt is None and neg_image_prompt is None) :
assert self.ip_loaded, 'You must setup IP-Adapter to add image prompt as input'
if image_prompt is None:
image_prompt = np.zeros((width, height, 3), dtype=np.uint8)
if neg_image_prompt is None:
neg_image_prompt = np.zeros((width, height, 3), dtype=np.uint8)
image_proj = self.get_image_proj(image_prompt)
neg_image_proj = self.get_image_proj(neg_image_prompt)
if self.controlnet_loaded:
controlnet_image = self.annotator(controlnet_image, width, height)
controlnet_image = torch.from_numpy((np.array(controlnet_image) / 127.5) - 1)
controlnet_image = controlnet_image.permute(
2, 0, 1).unsqueeze(0).to(torch.bfloat16).to(self.device)
return self.forward(
prompt,
width,
height,
guidance,
num_steps,
seed,
controlnet_image,
timestep_to_start_cfg=timestep_to_start_cfg,
true_gs=true_gs,
control_weight=control_weight,
neg_prompt=neg_prompt,
image_proj=image_proj,
neg_image_proj=neg_image_proj,
ip_scale=ip_scale,
neg_ip_scale=neg_ip_scale,
spatial_condition=self.spatial_condition,
source_image=source_image,
share_position_embedding=self.share_position_embedding
)
@torch.inference_mode()
def gradio_generate(self, prompt, image_prompt, controlnet_image, width, height, guidance,
num_steps, seed, true_gs, ip_scale, neg_ip_scale, neg_prompt,
neg_image_prompt, timestep_to_start_cfg, control_type, control_weight,
lora_weight, local_path, lora_local_path, ip_local_path):
if controlnet_image is not None:
controlnet_image = Image.fromarray(controlnet_image)
if ((self.controlnet_loaded and control_type != self.control_type)
or not self.controlnet_loaded):
if local_path is not None:
self.set_controlnet(control_type, local_path=local_path)
else:
self.set_controlnet(control_type, local_path=None,
repo_id=f"xlabs-ai/flux-controlnet-{control_type}-v3",
name=f"flux-{control_type}-controlnet-v3.safetensors")
if lora_local_path is not None:
self.set_lora(local_path=lora_local_path, lora_weight=lora_weight)
if image_prompt is not None:
image_prompt = Image.fromarray(image_prompt)
if neg_image_prompt is not None:
neg_image_prompt = Image.fromarray(neg_image_prompt)
if not self.ip_loaded:
if ip_local_path is not None:
self.set_ip(local_path=ip_local_path)
else:
self.set_ip(repo_id="xlabs-ai/flux-ip-adapter",
name="flux-ip-adapter.safetensors")
seed = int(seed)
if seed == -1:
seed = torch.Generator(device="cpu").seed()
img = self(prompt, image_prompt, controlnet_image, width, height, guidance,
num_steps, seed, true_gs, control_weight, ip_scale, neg_ip_scale, neg_prompt,
neg_image_prompt, timestep_to_start_cfg)
filename = f"output/gradio/{uuid.uuid4()}.jpg"
os.makedirs(os.path.dirname(filename), exist_ok=True)
exif_data = Image.Exif()
exif_data[ExifTags.Base.Make] = "XLabs AI"
exif_data[ExifTags.Base.Model] = self.model_type
img.save(filename, format="jpeg", exif=exif_data, quality=95, subsampling=0)
return img, filename
def forward(
self,
prompt,
width,
height,
guidance,
num_steps,
seed,
controlnet_image = None,
timestep_to_start_cfg = 0,
true_gs = 3.5,
control_weight = 0.9,
neg_prompt="",
image_proj=None,
neg_image_proj=None,
ip_scale=1.0,
neg_ip_scale=1.0,
spatial_condition=True,
source_image=None,
share_position_embedding=False
):
x = get_noise(
1, height, width, device=self.device,
dtype=torch.bfloat16, seed=seed
)
timesteps = get_schedule(
num_steps,
(width // 8) * (height // 8) // (16 * 16),
shift=True,
)
torch.manual_seed(seed)
with torch.no_grad():
if self.offload:
self.t5, self.clip = self.t5.to(self.device), self.clip.to(self.device)
# print("x noise shape:", x.shape)
inp_cond = prepare(t5=self.t5, clip=self.clip, img=x, prompt=prompt, use_spatial_condition=spatial_condition, share_position_embedding=share_position_embedding, use_share_weight_referencenet=self.use_share_weight_referencenet)
# print("input img noise shape:", inp_cond['img'].shape)
neg_inp_cond = prepare(t5=self.t5, clip=self.clip, img=x, prompt=neg_prompt, use_spatial_condition=spatial_condition, share_position_embedding=share_position_embedding, use_share_weight_referencenet=self.use_share_weight_referencenet)
if spatial_condition or self.use_share_weight_referencenet:
# TODO here:
source_image = self.ae.encode(source_image.to(self.device).to(torch.float32))
# print("ae source image shape:", source_image.shape)
source_image = rearrange(source_image, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=2, pw=2).to(inp_cond['img'].dtype)
# print("rearrange ae source image shape:", source_image.shape)
if self.offload:
self.offload_model_to_cpu(self.t5, self.clip)
self.model = self.model.to(self.device)
if self.controlnet_loaded:
x = denoise_controlnet(
self.model,
img=inp_cond['img'],
img_ids=inp_cond['img_ids'],
txt=inp_cond['txt'],
txt_ids=inp_cond['txt_ids'],
vec=inp_cond['vec'],
controlnet=self.controlnet,
timesteps=timesteps,
guidance=guidance,
controlnet_cond=controlnet_image,
timestep_to_start_cfg=timestep_to_start_cfg,
neg_txt=neg_inp_cond['txt'],
neg_txt_ids=neg_inp_cond['txt_ids'],
neg_vec=neg_inp_cond['vec'],
true_gs=true_gs,
controlnet_gs=control_weight,
image_proj=image_proj,
neg_image_proj=neg_image_proj,
ip_scale=ip_scale,
neg_ip_scale=neg_ip_scale,
)
else:
x = denoise(
self.model,
img=inp_cond['img'],
img_ids=inp_cond['img_ids'],
txt=inp_cond['txt'],
txt_ids=inp_cond['txt_ids'],
vec=inp_cond['vec'],
timesteps=timesteps,
guidance=guidance,
timestep_to_start_cfg=timestep_to_start_cfg,
neg_txt=neg_inp_cond['txt'],
neg_txt_ids=neg_inp_cond['txt_ids'],
neg_vec=neg_inp_cond['vec'],
true_gs=true_gs,
image_proj=image_proj,
neg_image_proj=neg_image_proj,
ip_scale=ip_scale,
neg_ip_scale=neg_ip_scale,
source_image=source_image, # spatial_condition source image
use_share_weight_referencenet=self.use_share_weight_referencenet,
single_img_ids=inp_cond['single_img_ids'] if self.use_share_weight_referencenet else None,
neg_single_img_ids=neg_inp_cond['single_img_ids'] if self.use_share_weight_referencenet else None,
single_block_refnet=self.single_block_refnet,
double_block_refnet=self.double_block_refnet,
)
if self.offload:
self.offload_model_to_cpu(self.model)
self.ae.decoder.to(x.device)
x = unpack(x.float(), height, width)
x = self.ae.decode(x)
self.offload_model_to_cpu(self.ae.decoder)
x1 = x.clamp(-1, 1)
x1 = rearrange(x1[-1], "c h w -> h w c")
output_img = Image.fromarray((127.5 * (x1 + 1.0)).cpu().byte().numpy())
return output_img
def offload_model_to_cpu(self, *models):
if not self.offload: return
for model in models:
model.cpu()
torch.cuda.empty_cache()
class XFluxSampler(XFluxPipeline):
def __init__(self, device, controlnet_loaded=False,ip_loaded=False, spatial_condition=False, offload=False, clip_image_processor=None, image_encoder=None, improj=None, share_position_embedding=False, use_share_weight_referencenet=False, single_block_refnet=False, double_block_refnet=False):
super().__init__(model_type="flux-dev", device=device, offload=False)
self.device = device
self.controlnet_loaded = controlnet_loaded
self.ip_loaded = ip_loaded
self.offload = offload
self.clip_image_processor = clip_image_processor
self.image_encoder = image_encoder
self.improj = improj
self.spatial_condition = spatial_condition
self.share_position_embedding = share_position_embedding
self.use_share_weight_referencenet = use_share_weight_referencenet
self.single_block_refnet = single_block_refnet
self.double_block_refnet = double_block_refnet |