File size: 6,871 Bytes
15bc41b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import numpy as np
import torch.nn as nn
import torch
import os
import torch.nn.functional as F
from .pointnet2_utils import PointNetSetAbstractionMsg, PointNetSetAbstraction, PointNetFeaturePropagation


class AttentionBlock(nn.Module):
    def __init__(self):
        super(AttentionBlock, self).__init__()

    def forward(self, key, value, query):
        query = query.permute(0, 2, 1)
        N, KC = key.shape[:2]
        key = key.view(N, KC, -1)

        N, KC = value.shape[:2]
        value = value.view(N, KC, -1)
       
        sim_map = torch.bmm(key, query)
        sim_map = (KC ** -.5 ) * sim_map
        sim_map = F.softmax(sim_map, dim=1)

        context = torch.bmm(sim_map, value)

        return context


class MANORegressor(nn.Module):
    def __init__(self, n_inp_features=4, n_pose_params=6, n_shape_params=10):
        super(MANORegressor, self).__init__()
        
        normal_channel = True

        if normal_channel:
            additional_channel = n_inp_features
        else:
            additional_channel = 0

        self.normal_channel = normal_channel
        
        self.sa1 = PointNetSetAbstractionMsg(128, [0.4,0.8], [64, 128], additional_channel, [[128, 128, 256], [128, 196, 256]])
        self.sa2 = PointNetSetAbstraction(npoint=None, radius=None, nsample=None, in_channel=512 + 3, mlp=[256, 512], group_all=True)

        self.n_pose_params = n_pose_params
        self.n_mano_params = n_pose_params + n_shape_params

        self.mano_regressor = nn.Sequential(
            nn.Linear(512, 1024),
            nn.ReLU(),
            nn.BatchNorm1d(1024),
            nn.Dropout(0.3),
            nn.Linear(1024, 3 + self.n_mano_params + 3),   
        )


    def J3dtoJ2d(self, j3d, scale):
        B, N = j3d.shape[:2]
        device = j3d.device

        j2d = torch.zeros(B, N, 2, device=device)
        j2d[:, :, 0] = scale[:, :, 0] * j3d[:, :, 0]
        j2d[:, :, 1] = scale[:, :, 1] * j3d[:, :, 1]

        return j2d

    def forward(self, xyz, features, mano_hand, previous_mano_params=None):
        device = xyz.device
        batch_size = xyz.shape[0]        

        l0_xyz = xyz
        l0_points = features

        l1_xyz, l1_points = self.sa1(l0_xyz, l0_points)
        l2_xyz, l2_points = self.sa2(l1_xyz, l1_points)

        l2_xyz = l2_xyz.squeeze(-1)
        l2_points = l2_points.squeeze(-1)

        if previous_mano_params is None:
            previous_mano_params = torch.zeros(self.n_mano_params).unsqueeze(0).expand(batch_size, -1).to(device)
            previous_rot_trans_params = torch.zeros(6).unsqueeze(0).expand(batch_size, -1).to(device)
        
        mano_params = self.mano_regressor(l2_points)
        
        global_orient = mano_params[:, :3]
        hand_pose = mano_params[:, 3:3+self.n_pose_params]
        betas = mano_params[:, 3+self.n_pose_params:-3]
        transl = mano_params[:, -3:]
                        
        device = mano_hand.shapedirs.device

        mano_args = {
            'global_orient': global_orient.to(device),
            'hand_pose'    : hand_pose.to(device),
            'betas'        : betas.to(device),
            'transl'       : transl.to(device),
        } 
        
        mano_outs = dict()

        output = mano_hand(**mano_args)
        mano_outs['vertices'] = output.vertices
        mano_outs['j3d'] = output.joints

        mano_outs.update(mano_args)

        if not self.training:            
            mano_outs['faces'] = np.tile(mano_hand.faces, (batch_size, 1, 1))

        return mano_outs


class TEHNet(nn.Module):
    def __init__(self, n_pose_params, num_classes=4):
        super(TEHNet, self).__init__()
        
        normal_channel = True

        if normal_channel:
            additional_channel = 1 + int(os.getenv('ERPC', 0))
        else:
            additional_channel = 0

        self.normal_channel = normal_channel
        self.sa1 = PointNetSetAbstractionMsg(512, [0.1, 0.2, 0.4], [32, 64, 128], 3+additional_channel, [[32, 32, 64], [64, 64, 128], [64, 96, 128]])
        self.sa2 = PointNetSetAbstractionMsg(128, [0.4,0.8], [64, 128], 128+128+64, [[128, 128, 256], [128, 196, 256]])
        self.sa3 = PointNetSetAbstraction(npoint=None, radius=None, nsample=None, in_channel=512 + 3, mlp=[256, 512, 1024], group_all=True)
        self.fp3 = PointNetFeaturePropagation(in_channel=1536, mlp=[256, 256])
        self.fp2 = PointNetFeaturePropagation(in_channel=576, mlp=[256, 128])

        self.fp1 = PointNetFeaturePropagation(128, [128, 128, 256])

        self.classifier = nn.Sequential(
            nn.Conv1d(256, 256, 1),
            nn.ReLU(),
            nn.BatchNorm1d(256),
            nn.Dropout(0.3),
            nn.Conv1d(256, num_classes, 1)
        )
    
        self.attention_block = AttentionBlock()

        self.left_mano_regressor = MANORegressor(n_pose_params=n_pose_params)
        self.right_mano_regressor = MANORegressor(n_pose_params=n_pose_params)

        self.mhlnes = int(os.getenv('MHLNES', 0))

        self.left_query_conv = nn.Sequential(
            nn.Conv1d(256, 256, 3, 1, 3//2),
            nn.ReLU(),
            nn.BatchNorm1d(256),
            nn.Dropout(0.1),
            nn.Conv1d(256, 256, 3, 1, 3//2),
            nn.BatchNorm1d(256),
        )

        self.right_query_conv = nn.Sequential(
            nn.Conv1d(256, 256, 3, 1, 3//2),
            nn.ReLU(),
            nn.BatchNorm1d(256),
            nn.Dropout(0.1),
            nn.Conv1d(256, 256, 3, 1, 3//2),
            nn.BatchNorm1d(256),
        )

    def forward(self, xyz, mano_hands):
        device = xyz.device
        
        # Set Abstraction layers
        l0_points = xyz
        
        l0_xyz = xyz[:, :3, :]

        if self.mhlnes:
            l0_xyz[:, -1, :] = xyz[:, 3:, :].mean(1)

        l1_xyz, l1_points = self.sa1(l0_xyz, l0_points)
        l2_xyz, l2_points = self.sa2(l1_xyz, l1_points)
        l3_xyz, l3_points = self.sa3(l2_xyz, l2_points)

        # Feature Propagation layers
        l2_points = self.fp3(l2_xyz, l3_xyz, l2_points, l3_points)
        l1_points = self.fp2(l1_xyz, l2_xyz, l1_points, l2_points)
        l0_points = self.fp1(l0_xyz, l1_xyz, None, l1_points)

        seg_out = self.classifier(l0_points)
        feat_fuse = l0_points

        left_hand_features = self.attention_block(seg_out, feat_fuse, self.left_query_conv(feat_fuse))
        right_hand_features = self.attention_block(seg_out, feat_fuse, self.right_query_conv(feat_fuse))

        left = self.left_mano_regressor(l0_xyz, left_hand_features, mano_hands['left'])
        right = self.right_mano_regressor(l0_xyz, right_hand_features, mano_hands['right'])

        return {'class_logits': seg_out, 'left': left, 'right': right}


def main():

    net = TEHNet(n_pose_params=6)
    points = torch.rand(4, 4, 128)
    net(points)


if __name__ == '__main__':
    main()