File size: 4,706 Bytes
15bc41b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9564652
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d965e49
 
9564652
 
 
 
 
15bc41b
 
 
 
 
 
 
 
 
 
 
 
 
 
d965e49
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
import os
os.environ['ERPC'] = '1'

import torch
import cv2
import time
import numpy as np
import trimesh

import arg_parser

from model import TEHNetWrapper
from settings import OUTPUT_HEIGHT, OUTPUT_WIDTH, MAIN_CAMERA, REAL_TEST_DATA_PATH


def pc_normalize(pc):
    pc[:, 0] /= OUTPUT_WIDTH
    pc[:, 1] /= OUTPUT_HEIGHT
    pc[:, :2] = 2 * pc[:, :2] - 1
    
    ts = pc[:, 2:]
    
    t_max = ts.max(0).values
    t_min = ts.min(0).values

    ts = (2 * ((ts - t_min) / (t_max - t_min))) - 1

    pc[:, 2:] = ts

    return pc



def process_events(events):
    n_events = 2048

    events[:, 2] -= events[0, 2] # normalize ts

    event_grid = np.zeros((OUTPUT_HEIGHT, OUTPUT_WIDTH, 3), dtype=np.float32)
    count_grid = np.zeros((OUTPUT_HEIGHT, OUTPUT_WIDTH), dtype=np.float32)

    x, y, t, p = events.T
    x, y = x.astype(dtype=np.int32), y.astype(dtype=np.int32)

    np.add.at(event_grid, (y, x, 0), t)
    np.add.at(event_grid, (y, x, 1), p == 1)
    np.add.at(event_grid, (y, x, 2), p != 1)

    np.add.at(count_grid, (y, x), 1)


    yi, xi = np.nonzero(count_grid)
    t_avg = event_grid[yi, xi, 0] / count_grid[yi, xi] 
    p_evn = event_grid[yi, xi, 1] 
    n_evn = event_grid[yi, xi, 2]

    events = np.hstack([xi[:, None], yi[:, None], t_avg[:, None], p_evn[:, None], n_evn[:, None]])

    sampled_indices = np.random.choice(events.shape[0], n_events)
    events = events[sampled_indices]

    events = torch.tensor(events, dtype=torch.float32)

    coordinates = np.zeros((events.shape[0], 2))
    event_frame = np.zeros((OUTPUT_HEIGHT, OUTPUT_WIDTH, 3), dtype=np.uint8)
    for idx, (x, y, t_avg, p_evn, n_evn) in enumerate(events):
        y, x = y.int(), x.int()
        
        coordinates[idx] = (y, x)
        event_frame[y, x, 0] = (p_evn / (p_evn + n_evn)) * 255
        event_frame[y, x, -1] = (n_evn / (p_evn + n_evn)) * 255


    events[:, :3] = pc_normalize(events[:, :3])

    hand_data = {
        'event_frame': torch.tensor(event_frame, dtype=torch.uint8),
        'events': events.permute(1, 0).unsqueeze(0),
        'coordinates': torch.tensor(coordinates, dtype=torch.float32)
    }
    
    return hand_data



def demo(net, device, data):
    net.eval()

    events = data['events']
    events = events.to(device=device, dtype=torch.float32)

    start_time = time.time()
    with torch.no_grad():
        outputs = net(events)

    end_time = time.time()

    N = events.shape[0]
    print(end_time - start_time)

    outputs['class_logits'] = outputs['class_logits'].softmax(1).argmax(1).int().cpu()
    
    frames = list()
    for idx in range(N):
        hands = dict()

        hands['left'] = {
            'vertices': outputs['left']['vertices'][idx].cpu(),
            'j3d': outputs['left']['j3d'][idx].cpu(),
        }

        hands['right'] = {
            'vertices': outputs['right']['vertices'][idx].cpu(),
            'j3d': outputs['right']['j3d'][idx].cpu(),
        }

        coordinates = data['coordinates']

        seg_mask = np.zeros((OUTPUT_HEIGHT, OUTPUT_WIDTH, 3), dtype=np.uint8)
        for edx, (y, x) in enumerate(coordinates):
            y, x = y.int(), x.int()

            cid = outputs['class_logits'][idx][edx]            

            if cid == 3:
                seg_mask[y, x] = 255
            else:
                seg_mask[y, x, cid] = 255

        hands['seg_mask'] = seg_mask

        frames.append(hands)

    return frames


class Ev2Hands:
    def __init__(self) -> None:
        arg_parser.demo()
        device = torch.device('cpu')
        net = TEHNetWrapper(device=device)

        save_path = os.environ['CHECKPOINT_PATH']     

        checkpoint = torch.load(save_path, map_location=device)
        net.load_state_dict(checkpoint['state_dict'], strict=True)

        rot = trimesh.transformations.rotation_matrix(np.radians(180), [1, 0, 0])
        
        mano_hands = net.hands

        self.net = net
        self.device = device
        self.mano_hands = mano_hands
        self.rot = rot 
         
    def __call__(self, data):
        net = self.net
        device = self.device
        mano_hands = self.mano_hands
        rot = self.rot

        frame = demo(net=net, device=device, data=data)[0]
        seg_mask = frame['seg_mask']

        pred_meshes = list()
        for hand_type in ['left', 'right']:
            faces = mano_hands[hand_type].faces

            pred_mesh = trimesh.Trimesh(frame[hand_type]['vertices'].cpu().numpy() * 1000, faces)
            pred_mesh.visual.vertex_colors = [255, 0, 0]
            pred_meshes.append(pred_mesh)

        pred_meshes = trimesh.util.concatenate(pred_meshes)
        pred_meshes.apply_transform(rot)
        
        return pred_meshes