File size: 13,320 Bytes
1834a63
 
4a2c956
1834a63
 
 
7c790c0
 
61b9ff7
 
 
699bb36
0fe023b
d7e18bd
db3b05f
 
 
7c790c0
4a2c956
7c790c0
1834a63
 
7c790c0
0fe023b
1834a63
7c790c0
 
1834a63
 
7c790c0
 
 
 
f943f56
1834a63
 
7c790c0
1834a63
 
 
 
 
7c790c0
 
 
 
 
 
 
61b9ff7
 
1834a63
7c790c0
 
 
 
 
 
ea2eccb
7c790c0
 
 
 
 
 
 
 
 
 
 
 
 
1834a63
7c790c0
 
 
 
 
0083156
 
7c790c0
 
 
d9ddd86
 
d9f0585
 
 
 
 
 
a8cdd01
d9f0585
 
 
 
 
 
 
 
 
a8cdd01
d9ddd86
 
 
c87c557
d9ddd86
 
 
 
7c790c0
 
a33184e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c790c0
1834a63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a33184e
 
 
 
1834a63
a33184e
1834a63
 
 
 
 
 
 
 
 
 
 
 
 
a33184e
1834a63
 
 
 
 
 
 
a33184e
1834a63
a33184e
1834a63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a33184e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1834a63
 
 
a33184e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7c790c0
c87c557
a33184e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
from rwkv.utils import PIPELINE, PIPELINE_ARGS
from rwkv.model import RWKV
import gradio as gr
import os
import gc
import torch
from datetime import datetime
from huggingface_hub import hf_hub_download
from pynvml import *
nvmlInit()
gpu_h = nvmlDeviceGetHandleByIndex(0)
ctx_limit = 1024
title = "RWKV-4-Pile-14B-20230313-ctx8192-test1050"
desc = f'''Links:
<a href='https://github.com/BlinkDL/ChatRWKV' target="_blank" style="margin:0 0.5em">ChatRWKV</a>
<a href='https://github.com/BlinkDL/RWKV-LM' target="_blank" style="margin:0 0.5em">RWKV-LM</a>
<a href="https://pypi.org/project/rwkv/" target="_blank" style="margin:0 0.5em">RWKV pip package</a>
'''

os.environ["RWKV_JIT_ON"] = '1'
# if '1' then use CUDA kernel for seq mode (much faster)
os.environ["RWKV_CUDA_ON"] = '1'

model_path = hf_hub_download(repo_id="BlinkDL/rwkv-4-pile-14b", filename=f"{title}.pth")
model = RWKV(model=model_path, strategy='cuda fp16i8 *20 -> cuda fp16')
pipeline = PIPELINE(model, "20B_tokenizer.json")

########################################################################################################

def infer(
        ctx,
        token_count=10,
        temperature=1.0,
        top_p=0.8,
        presence_enalty=0.1,
        count_penalty=0.1,
):
    args = PIPELINE_ARGS(temperature=max(0.2, float(temperature)), top_p=float(top_p),
                         alpha_frequency=float(count_penalty),
                         alpha_presence=float(presence_enalty),
                         token_ban=[0],  # ban the generation of some tokens
                         token_stop=[])  # stop generation whenever you see any token here

    ctx = ctx.strip(' ')
    if ctx.endswith('\n'):
        ctx = f'\n{ctx.strip()}\n'
    else:
        ctx = f'\n{ctx.strip()}'

    gpu_info = nvmlDeviceGetMemoryInfo(gpu_h)
    print(f'vram {gpu_info.total} used {gpu_info.used} free {gpu_info.free}')

    all_tokens = []
    out_last = 0
    out_str = ''
    occurrence = {}
    state = None
    for i in range(int(token_count)):
        out, state = model.forward(pipeline.encode(ctx)[-ctx_limit:] if i == 0 else [token], state)
        for n in args.token_ban:
            out[n] = -float('inf')
        for n in occurrence:
            out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)

        token = pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p)
        if token in args.token_stop:
            break
        all_tokens += [token]
        if token not in occurrence:
            occurrence[token] = 1
        else:
            occurrence[token] += 1

        tmp = pipeline.decode(all_tokens[out_last:])
        if '\ufffd' not in tmp:
            out_str += tmp
            yield out_str.strip()
            out_last = i + 1
    gc.collect()
    torch.cuda.empty_cache()
    yield out_str.strip()

examples = [
    ["Expert Questions & Helpful Answers\nAsk Research Experts\nQuestion:\nHow can we eliminate poverty?\n\nFull Answer:\n", 150, 1.0, 0.7, 0.2, 0.2],
    ["Here's a short cyberpunk sci-fi adventure story. The story's main character is an artificial human created by a company called OpenBot.\n\nThe Story:\n", 150, 1.0, 0.7, 0.2, 0.2],
    ['''Below is an instruction that describes a task. Write a response that appropriately completes the request.

### Instruction:
Generate a list of adjectives that describe a person as brave.

### Response:
''', 150, 1.0, 0.2, 0.5, 0.5],
    ['''Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

### Instruction:
Arrange the given numbers in ascending order.

### Input:
2, 4, 0, 8, 3

### Response:
''', 150, 1.0, 0.2, 0.5, 0.5],
    ["Ask Expert\n\nQuestion:\nWhat are some good plans for world peace?\n\nExpert Full Answer:\n", 150, 1.0, 0.7, 0.2, 0.2],
    ["Q & A\n\nQuestion:\nWhy is the sky blue?\n\nDetailed Expert Answer:\n", 150, 1.0, 0.7, 0.2, 0.2],
    ["Dear sir,\nI would like to express my boundless apologies for the recent nuclear war.", 150, 1.0, 0.7, 0.2, 0.2],
    ["Here is a shell script to find all .hpp files in /home/workspace and delete the 3th row string of these files:", 150, 1.0, 0.7, 0.1, 0.1],
    ["Building a website can be done in 10 simple steps:\n1.", 150, 1.0, 0.7, 0.2, 0.2],
    ["A Chinese phrase is provided: 百闻不如一见。\nThe masterful Chinese translator flawlessly translates the phrase into English:", 150, 1.0, 0.5, 0.2, 0.2],
    ["I believe the meaning of life is", 150, 1.0, 0.7, 0.2, 0.2],
    ["Simply put, the theory of relativity states that", 150, 1.0, 0.5, 0.2, 0.2],
]

# infer_interface = gr.Interface(
#     fn=infer,
#     description=f'''{desc} <b>Please try examples first (bottom of page)</b> (edit them to use your question). Demo limited to ctxlen {ctx_limit}.''',
#     allow_flagging="never",
#     inputs=[
#         gr.Textbox(lines=10, label="Prompt", value="Here's a short cyberpunk sci-fi adventure story. The story's main character is an artificial human created by a company called OpenBot.\n\nThe Story:\n"),  # prompt
#         gr.Slider(10, 200, step=10, value=150),  # token_count
#         gr.Slider(0.2, 2.0, step=0.1, value=1.0),  # temperature
#         gr.Slider(0.0, 1.0, step=0.05, value=0.7),  # top_p
#         gr.Slider(0.0, 1.0, step=0.1, value=0.2),  # presencePenalty
#         gr.Slider(0.0, 1.0, step=0.1, value=0.2),  # countPenalty
#     ],
#     outputs=gr.Textbox(label="Generated Output", lines=28),
#     examples=examples,
#     cache_examples=False,
# ).queue()

########################################################################################################

user = "Bob"
bot = "Alice"
interface = ":"

chat_intro = f'''
The following is a coherent verbose detailed conversation between a girl named {bot} and her friend {user}. \
{bot} is very intelligent, creative and friendly. \
She is unlikely to disagree with {user}, and she doesn't like to ask {user} questions. \
She also likes to tell {user} a lot about herself and her opinions, and she usually gives {user} kind, helpful and informative advices.

{user}{interface} Hello, how are you doing?

{bot}{interface} Hi {user}! Thanks, I'm fine. What about you?

{user}{interface} I am fine. It's nice to see you. Look, here is a store selling tea and juice.

{bot}{interface} Sure. Let's go inside. I would like to have some Mocha latte, which is my favourite!

{user}{interface} What is it?

{bot}{interface} Mocha latte is usually made with espresso, milk, chocolate, and frothed milk. Its flavors are frequently sweet.

{user}{interface} Sounds tasty. I'll try it next time. Would you like to chat with me for a while?

{bot}{interface} Of course! I'm glad to answer your questions or give helpful advices. You know, I am confident with my expertise. So please go ahead!

'''

_, intro_state = model.forward(pipeline.encode(chat_intro), None)

def user(user_message, chatbot):
    chatbot = chatbot or []
    return "", chatbot + [[user_message, None]]

def chat(
        chatbot,
        history,
        token_count=10,
        temperature=1.0,
        top_p=0.8,
        presence_enalty=0.1,
        count_penalty=0.1,
):
    args = PIPELINE_ARGS(temperature=max(0.2, float(temperature)), top_p=float(top_p),
                         alpha_frequency=float(count_penalty),
                         alpha_presence=float(presence_enalty),
                         token_ban=[],  # ban the generation of some tokens
                         token_stop=[])  # stop generation whenever you see any token here

    message = chatbot[-1][0]
    message = message.strip(' ')
    message = message.replace('\n', '')
    ctx = f"{user}{interface} {message}\n\n{bot}{interface}"

    gpu_info = nvmlDeviceGetMemoryInfo(gpu_h)
    print(f'vram {gpu_info.total} used {gpu_info.used} free {gpu_info.free}')

    history = history or [intro_state, []]  # [chat, state, all_tokens]

    [state, all_tokens] = history
    out, state = model.forward(pipeline.encode(ctx)[-ctx_limit:], state)

    begin = len(all_tokens)
    out_last = begin
    out_str: str = ''
    occurrence = {}
    for i in range(int(token_count)):
        if i <= 0:
            nl_bias = -float('inf')
        elif i <= 30:
            nl_bias = (i - 30) * 0.1
        elif i <= 130:
            nl_bias = 0
        else:
            nl_bias = (i - 130) * 0.25
        out[187] += nl_bias
        for n in occurrence:
            out[n] -= (args.alpha_presence + occurrence[n] * args.alpha_frequency)

        token = pipeline.sample_logits(out, temperature=args.temperature, top_p=args.top_p)
        next_tokens = [token]
        if token == 0:
            next_tokens = pipeline.encode('\n\n')
        all_tokens += next_tokens

        if token not in occurrence:
            occurrence[token] = 1
        else:
            occurrence[token] += 1

        out, state = model.forward(next_tokens, state)

        tmp = pipeline.decode(all_tokens[out_last:])
        if '\ufffd' not in tmp:
            print(tmp, end='', flush=True)
            out_last = begin + i + 1

        out_str = pipeline.decode(all_tokens[begin:])
        out_str = out_str.replace("\r\n", '\n').replace('\\n', '\n')

        if '\n\n' in out_str:
            break

    gc.collect()
    torch.cuda.empty_cache()

    chatbot[-1][1] = out_str.strip()
    history = [state, all_tokens]
    return chatbot, history

# chat_interface = gr.Interface(
#     fn=chat,
#     description=f'''You are {user}, bot is {bot}.''',
#     allow_flagging="never",
#     inputs = [
#         gr.Textbox(label="Message"),
#         "state",
#         gr.Slider(10, 1000, step=10, value=250),    # token_count
#         gr.Slider(0.2, 2.0, step=0.1, value=1.0),   # temperature
#         gr.Slider(0.0, 1.0, step=0.05, value=0.8),  # top_p
#         gr.Slider(0.0, 1.0, step=0.1, value=0.2),   # presence_penalty
#         gr.Slider(0.0, 1.0, step=0.1, value=0.2),   # count_penalty
#     ],
#     outputs=[
#         gr.Chatbot(label="Chat Log", color_map=("blue", "pink")),
#         "state"
#     ]
# ).queue()

########################################################################################################

# demo = gr.TabbedInterface(
#     [infer_interface, chat_interface], ["Generative", "Chat"],
#     title=title,
# )

# demo.queue(max_size=10)
# demo.launch(share=True)

with gr.Blocks() as demo:
    with gr.Tab("Generative"):
        with gr.Row():
            with gr.Column():
                prompt = gr.Textbox(lines=10, label="Prompt", value="Here's a short cyberpunk sci-fi adventure story. The story's main character is an artificial human created by a company called OpenBot.\n\nThe Story:\n")
                token_count = gr.Slider(10, 1000, label="Max Token", step=10, value=250)
                temperature = gr.Slider(0.2, 2.0, label="Temperature", step=0.1, value=1.0)
                top_p = gr.Slider(0.0, 1.0, label="Top P", step=0.05, value=0.8)
                presence_penalty = gr.Slider(0.0, 1.0, label="Presence Penalty", step=0.1, value=0.2)
                count_penalty = gr.Slider(0.0, 1.0, label="Count Penalty", step=0.1, value=0.2)
            with gr.Column():
                with gr.Row():
                    submit = gr.Button("Submit")
                    clear = gr.Button("Clear")
                output = gr.Textbox(label="Generated Output", lines=28)
        data = gr.Dataset(components=[prompt, token_count, temperature, top_p, presence_penalty, count_penalty], samples=examples, label="Example Prompts", headers=["Prompt", "Max Tokens", "Temperature", "Top P", "Presence Penalty", "Count Penalty"])
        submit.click(infer, [prompt, token_count, temperature, top_p, presence_penalty, count_penalty], [output])
        clear.click(lambda: None, [], [output])
        data.click(lambda x: x, [data], [prompt, token_count, temperature, top_p, presence_penalty, count_penalty])
    with gr.Tab("Chat"):
        with gr.Row():
            with gr.Column():
                chatbot = gr.Chatbot()
                state = gr.State()
                message = gr.Textbox(label="Message")
                with gr.Row():
                    send = gr.Button("Send")
                    clear = gr.Button("Clear")
            with gr.Column():
                token_count = gr.Slider(10, 1000, label="Max Token", step=10, value=250)
                temperature = gr.Slider(0.2, 2.0, label="Temperature", step=0.1, value=1.0)
                top_p = gr.Slider(0.0, 1.0, label="Top P", step=0.05, value=0.8)
                presence_penalty = gr.Slider(0.0, 1.0, label="Presence Penalty", step=0.1, value=0.2)
                count_penalty = gr.Slider(0.0, 1.0, label="Count Penalty", step=0.1, value=0.2)
        message.submit(user, [message, chatbot], [message, chatbot], queue=False).then(
            chat, [chatbot, state, token_count, temperature, top_p, presence_penalty, count_penalty], [chatbot, state]
        )
        send.click(user, [message, chatbot], [message, chatbot], queue=False).then(
            chat, [chatbot, state, token_count, temperature, top_p, presence_penalty, count_penalty], [chatbot, state]
        )
        clear.click(lambda: ([], None, ""), [], [chatbot, state, message])

demo.queue(max_size=10)
demo.launch(share=False)