File size: 12,564 Bytes
be4456f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
import streamlit as st
import pandas as pd
import plotly.express as px
import plotly.graph_objects as go
import numpy as np
import plotly.express as px
import plotly.graph_objects as go
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import datetime
from utilities import set_header,initialize_data,load_local_css
from scipy.optimize import curve_fit
import statsmodels.api as sm
from plotly.subplots import make_subplots

st.set_page_config(
  page_title="Data Validation",
  page_icon=":shark:",
  layout="wide",
  initial_sidebar_state='collapsed'
)
load_local_css('styles.css')
set_header()

def format_numbers(x):
    if abs(x) >= 1e6:
        # Format as millions with one decimal place and commas
        return f'{x/1e6:,.1f}M'
    elif abs(x) >= 1e3:
        # Format as thousands with one decimal place and commas
        return f'{x/1e3:,.1f}K'
    else:
        # Format with one decimal place and commas for values less than 1000
        return f'{x:,.1f}'

def format_axis(x):
    if isinstance(x, tuple):
        x = x[0]  # Extract the numeric value from the tuple
    if abs(x) >= 1e6:
        return f'{x / 1e6:.0f}M'
    elif abs(x) >= 1e3:
        return f'{x / 1e3:.0f}k'
    else:
        return f'{x:.0f}'


attributred_app_installs=pd.read_csv("attributed_app_installs.csv")
attributred_app_installs_tactic=pd.read_excel('attributed_app_installs_tactic.xlsx')
data=pd.read_excel('Channel_wise_imp_click_spends.xlsx')
data['Date']=pd.to_datetime(data['Date'])
st.header('Saturation Curves')

# st.dataframe(data.head(2))
st.markdown('Data QC')

st.markdown('Channel wise summary')
summary_df=data.groupby(data['Date'].dt.strftime('%B %Y')).sum()
summary_df=summary_df.sort_index(key=lambda x: pd.to_datetime(x, format='%B %Y'))
st.dataframe(summary_df.applymap(format_numbers))



def line_plot_target(df,target,title):
    df=df
    df['Date_unix'] = df['Date'].apply(lambda x: x.timestamp())

# Perform polynomial fitting
    coefficients = np.polyfit(df['Date_unix'], df[target], 1)
    # st.dataframe(df)
    coefficients = np.polyfit(df['Date'].view('int64'), df[target], 1)
    trendline = np.poly1d(coefficients)
    fig = go.Figure()

    fig.add_trace(go.Scatter(x=df['Date'], y=df[target], mode='lines', name=target,line=dict(color='#11B6BD')))
    trendline_x = df['Date']
    trendline_y = trendline(df['Date'].view('int64'))


    fig.add_trace(go.Scatter(x=trendline_x, y=trendline_y, mode='lines', name='Trendline', line=dict(color='#739FAE')))

    fig.update_layout(
        title=title,
        xaxis=dict(type='date')
    )

    for year in df['Date'].dt.year.unique()[1:]:

        january_1 = pd.Timestamp(year=year, month=1, day=1)
        fig.add_shape(
            go.layout.Shape(
                type="line",
                x0=january_1,
                x1=january_1,
                y0=0,
                y1=1,
                xref="x",
                yref="paper",
                line=dict(color="grey", width=1.5, dash="dash"),
            )
        )

    return fig
channels_d= data.columns[:28]
channels=list(set([col.replace('_impressions','').replace('_clicks','').replace('_spend','') for col in channels_d if col.lower()!='date']))
channel= st.selectbox('Select Channel_name',channels)
target_column = st.selectbox('Select Channel)',[col for col in data.columns if col.startswith(channel)])
fig=line_plot_target(data, target=str(target_column), title=f'{str(target_column)} Over Time')
st.plotly_chart(fig, use_container_width=True)

# st.markdown('## Saturation Curve')


st.header('Build saturation curve')

# Your data
# st.write(len(attributred_app_installs))
# st.write(len(data))
# col=st.columns(3)
# with col[0]:
col=st.columns(2)
with col[0]:
    if st.checkbox('Cap Outliers'):
        x = data[target_column]
        x.index=data['Date']
        # st.write(x)
        result = sm.tsa.seasonal_decompose(x, model='additive')
        x_resid=result.resid
        # fig = make_subplots(rows=1, cols=1, shared_xaxes=True, vertical_spacing=0.02)
        # trace_x = go.Scatter(x=data['Date'], y=x, mode='lines', name='x')
        # fig.add_trace(trace_x)
        # trace_x_resid = go.Scatter(x=data['Date'], y=x_resid, mode='lines', name='x_resid', yaxis='y2',line=dict(color='orange'))

        # fig.add_trace(trace_x_resid)
        # fig.update_layout(title='',
        #               xaxis=dict(title='Date'),
        #               yaxis=dict(title='x', side='left'),
        #               yaxis2=dict(title='x_resid', side='right'))
        # st.title('')
        # st.plotly_chart(fig)

        # x=result.resid
        # x=x.fillna(0)
        x_mean = np.mean(x)
        x_std = np.std(x)
        x_scaled = (x - x_mean) / x_std
        lower_threshold = -2.0 
        upper_threshold = 2.0   
        x_scaled = np.clip(x_scaled, lower_threshold, upper_threshold)
    else:
        x = data[target_column]
        x_mean = np.mean(x)
        x_std = np.std(x)
        x_scaled = (x - x_mean) / x_std
with col[1]:
    if st.checkbox('Attributed'):
        column=[col for col in attributred_app_installs.columns if col in target_column]
        data['app_installs_appsflyer']=attributred_app_installs[column]
        y=data['app_installs_appsflyer']
        title='Attributed-App_installs_appsflyer'
        # st.dataframe(y)
        # st.dataframe(x)
        # st.dataframe(x_scaled)
    else:
        y=data["app_installs_appsflyer"]
        title='App_installs_appsflyer'
        # st.write(len(y))
    # Curve fitting function
def sigmoid(x, K, a, x0):
    return K / (1 + np.exp(-a * (x - x0)))

initial_K = np.max(y)
initial_a = 1
initial_x0 = 0
columns=st.columns(3)


with columns[0]:
    K = st.number_input('K (Amplitude)', min_value=0.01, max_value=2.0 * np.max(y), value=float(initial_K), step=5.0)
with columns[1]:
    a = st.number_input('a (Slope)', min_value=0.01, max_value=5.0, value=float(initial_a), step=0.5)
with columns[2]:
    x0 = st.number_input('x0 (Center)', min_value=float(min(x_scaled)), max_value=float(max(x_scaled)), value=float(initial_x0), step=2.0)
params, _ = curve_fit(sigmoid, x_scaled, y, p0=[K, a, x0], maxfev=20000)


x_slider = st.slider('X Value', min_value=float(min(x)), max_value=float(max(x))+1, value=float(x_mean), step=1.)

# Calculate the corresponding value on the fitted curve
x_slider_scaled = (x_slider - x_mean) / x_std
y_slider_fit = sigmoid(x_slider_scaled, *params)

# Display the corresponding value
st.write(f'{target_column}: {format_numbers(x_slider)}')
st.write(f'Corresponding  App_installs: {format_numbers(y_slider_fit)}')

# Scatter plot of your data
fig = px.scatter(data_frame=data, x=x_scaled, y=y, labels={'x': f'{target_column}', 'y': 'App Installs'}, title=title)

# Add the fitted sigmoid curve to the plot
x_fit = np.linspace(min(x_scaled), max(x_scaled), 100)  # Generate x values for the curve
y_fit = sigmoid(x_fit, *params)
fig.add_trace(px.line(x=x_fit, y=y_fit).data[0])
fig.data[1].update(line=dict(color='orange'))
fig.add_vline(x=x_slider_scaled, line_dash='dash', line_color='red', annotation_text=f'{format_numbers(x_slider)}')

x_tick_labels = {format_axis(x_scaled[i]): format_axis(x[i]) for i in range(len(x_scaled))}
num_points = 30  # Number of points you want to select
keys = list(x_tick_labels.keys())
values = list(x_tick_labels.values())
spacing = len(keys) // num_points  # Calculate the spacing
if spacing==0:
    spacing=15
    selected_keys = keys[::spacing]
    selected_values = values[::spacing]
else:
    selected_keys = keys[::spacing]
    selected_values = values[::spacing]

# Update the x-axis ticks with the selected keys and values
fig.update_xaxes(tickvals=selected_keys, ticktext=selected_values)
fig.update_xaxes(tickvals=list(x_tick_labels.keys()), ticktext=list(x_tick_labels.values()))
# Show the plot using st.plotly_chart

fig.update_xaxes(showgrid=False)
fig.update_yaxes(showgrid=False)
fig.update_layout(
    width=600,  # Adjust the width as needed
    height=600  # Adjust the height as needed
)
st.plotly_chart(fig)




st.markdown('Tactic level')
if channel=='paid_social':

    tactic_data=pd.read_excel("Tatcic_paid.xlsx",sheet_name='paid_social_impressions')
else:
    tactic_data=pd.read_excel("Tatcic_paid.xlsx",sheet_name='digital_app_display_impressions')  
target_column = st.selectbox('Select Channel)',[col for col in tactic_data.columns if col!='Date' and col!='app_installs_appsflyer'])
fig=line_plot_target(tactic_data, target=str(target_column), title=f'{str(target_column)} Over Time')
st.plotly_chart(fig, use_container_width=True)

if st.checkbox('Cap Outliers',key='tactic1'):
    x = tactic_data[target_column]
    x_mean = np.mean(x)
    x_std = np.std(x)
    x_scaled = (x - x_mean) / x_std
    lower_threshold = -2.0 
    upper_threshold = 2.0   
    x_scaled = np.clip(x_scaled, lower_threshold, upper_threshold)
else:
    x = tactic_data[target_column]
    x_mean = np.mean(x)
    x_std = np.std(x)
    x_scaled = (x - x_mean) / x_std

if st.checkbox('Attributed',key='tactic2'):
    column=[col for col in attributred_app_installs_tactic.columns if col in target_column]
    tactic_data['app_installs_appsflyer']=attributred_app_installs_tactic[column]
    y=tactic_data['app_installs_appsflyer']
    title='Attributed-App_installs_appsflyer'
    # st.dataframe(y)
    # st.dataframe(x)
    # st.dataframe(x_scaled)
else:
    y=data["app_installs_appsflyer"]
    title='App_installs_appsflyer'
    # st.write(len(y))
# Curve fitting function
def sigmoid(x, K, a, x0):
    return K / (1 + np.exp(-a * (x - x0)))

# Curve fitting
# st.dataframe(x_scaled.head(3))
# # y=y.astype(float)
# st.dataframe(y.head(3))
initial_K = np.max(y)
initial_a = 1
initial_x0 = 0
K = st.number_input('K (Amplitude)', min_value=0.01, max_value=2.0 * np.max(y), value=float(initial_K), step=5.0,key='tactic3')
a = st.number_input('a (Slope)', min_value=0.01, max_value=5.0, value=float(initial_a), step=2.0,key='tactic41')
x0 = st.number_input('x0 (Center)', min_value=float(min(x_scaled)), max_value=float(max(x_scaled)), value=float(initial_x0), step=2.0,key='tactic4')
params, _ = curve_fit(sigmoid, x_scaled, y, p0=[K, a, x0], maxfev=20000)

# Slider to vary x
x_slider = st.slider('X Value', min_value=float(min(x)), max_value=float(max(x)), value=float(x_mean), step=1.,key='tactic7')

# Calculate the corresponding value on the fitted curve
x_slider_scaled = (x_slider - x_mean) / x_std
y_slider_fit = sigmoid(x_slider_scaled, *params)

# Display the corresponding value
st.write(f'{target_column}: {format_axis(x_slider)}')
st.write(f'Corresponding  App_installs: {format_axis(y_slider_fit)}')

# Scatter plot of your data
fig = px.scatter(data_frame=data, x=x_scaled, y=y, labels={'x': f'{target_column}', 'y': 'App Installs'}, title=title)

# Add the fitted sigmoid curve to the plot
x_fit = np.linspace(min(x_scaled), max(x_scaled), 100)  # Generate x values for the curve
y_fit = sigmoid(x_fit, *params)
fig.add_trace(px.line(x=x_fit, y=y_fit).data[0])
fig.data[1].update(line=dict(color='orange'))
fig.add_vline(x=x_slider_scaled, line_dash='dash', line_color='red', annotation_text=f'{format_numbers(x_slider)}')



x_tick_labels = {format_axis((x_scaled[i],0)): format_axis(x[i]) for i in range(len(x_scaled))}
num_points = 50  # Number of points you want to select
keys = list(x_tick_labels.keys())
values = list(x_tick_labels.values())
spacing = len(keys) // num_points  # Calculate the spacing
if spacing==0:
    spacing=2
    selected_keys = keys[::spacing]
    selected_values = values[::spacing]
else:
    selected_keys = keys[::spacing]
    selected_values = values[::spacing]

# Update the x-axis ticks with the selected keys and values
fig.update_xaxes(tickvals=selected_keys, ticktext=selected_values)

# Round the x-axis and y-axis tick values to zero decimal places
fig.update_xaxes(tickformat=".f")  # Format x-axis ticks to zero decimal places
fig.update_yaxes(tickformat=".f")  # Format y-axis ticks to zero decimal places

# Show the plot using st.plotly_chart
fig.update_xaxes(showgrid=False)
fig.update_yaxes(showgrid=False)
fig.update_layout(
    width=600,  # Adjust the width as needed
    height=600  # Adjust the height as needed
)
st.plotly_chart(fig)