Spaces:
Sleeping
Sleeping
File size: 20,989 Bytes
94bbd2b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 |
import streamlit as st
from numerize.numerize import numerize
import numpy as np
from functools import partial
from collections import OrderedDict
from plotly.subplots import make_subplots
import plotly.graph_objects as go
from utilities import format_numbers,load_local_css,set_header,initialize_data,load_authenticator,send_email,channel_name_formating
from classes import class_from_dict,class_to_dict
import pickle
import streamlit_authenticator as stauth
import yaml
from yaml import SafeLoader
import re
import pandas as pd
import plotly.express as px
target='Revenue'
st.set_page_config(layout='wide')
load_local_css('styles.css')
set_header()
for k, v in st.session_state.items():
if k not in ['logout', 'login','config'] and not k.startswith('FormSubmitter'):
st.session_state[k] = v
# ======================================================== #
# ======================= Functions ====================== #
# ======================================================== #
def optimize():
"""
Optimize the spends for the sales
"""
channel_list = [key for key,value in st.session_state['optimization_channels'].items() if value]
print('channel_list')
print(channel_list)
print('@@@@@@@@')
if len(channel_list) > 0 :
scenario = st.session_state['scenario']
result = st.session_state['scenario'].optimize(st.session_state['total_spends_change'],channel_list)
for channel_name, modified_spends in result:
st.session_state[channel_name] = numerize(modified_spends * scenario.channels[channel_name].conversion_rate,1)
prev_spends = st.session_state['scenario'].channels[channel_name].actual_total_spends
st.session_state[f'{channel_name}_change'] = round(100*(modified_spends - prev_spends) / prev_spends,2)
def save_scenario(scenario_name):
"""
Save the current scenario with the mentioned name in the session state
Parameters
----------
scenario_name
Name of the scenario to be saved
"""
if 'saved_scenarios' not in st.session_state:
st.session_state = OrderedDict()
#st.session_state['saved_scenarios'][scenario_name] = st.session_state['scenario'].save()
st.session_state['saved_scenarios'][scenario_name] = class_to_dict(st.session_state['scenario'])
st.session_state['scenario_input'] = ""
print(type(st.session_state['saved_scenarios']))
with open('../saved_scenarios.pkl', 'wb') as f:
pickle.dump(st.session_state['saved_scenarios'],f)
def update_all_spends():
"""
Updates spends for all the channels with the given overall spends change
"""
percent_change = st.session_state['total_spends_change']
for channel_name in st.session_state['channels_list']:
channel = st.session_state['scenario'].channels[channel_name]
current_spends = channel.actual_total_spends
modified_spends = (1 + percent_change/100) * current_spends
st.session_state['scenario'].update(channel_name, modified_spends)
st.session_state[channel_name] = numerize(modified_spends*channel.conversion_rate,1)
st.session_state[f'{channel_name}_change'] = percent_change
def extract_number_for_string(string_input):
string_input = string_input.upper()
if string_input.endswith('K'):
return float(string_input[:-1])*10**3
elif string_input.endswith('M'):
return float(string_input[:-1])*10**6
elif string_input.endswith('B'):
return float(string_input[:-1])*10**9
def validate_input(string_input):
pattern = r'\d+\.?\d*[K|M|B]$'
match = re.match(pattern, string_input)
if match is None:
return False
return True
def update_data_by_percent(channel_name):
prev_spends = st.session_state['scenario'].channels[channel_name].actual_total_spends * st.session_state['scenario'].channels[channel_name].conversion_rate
modified_spends = prev_spends * (1 + st.session_state[f'{channel_name}_change']/100)
st.session_state[channel_name] = numerize(modified_spends,1)
st.session_state['scenario'].update(channel_name, modified_spends/st.session_state['scenario'].channels[channel_name].conversion_rate)
def update_data(channel_name):
"""
Updates the spends for the given channel
"""
if validate_input(st.session_state[channel_name]):
modified_spends = extract_number_for_string(st.session_state[channel_name])
prev_spends = st.session_state['scenario'].channels[channel_name].actual_total_spends * st.session_state['scenario'].channels[channel_name].conversion_rate
st.session_state[f'{channel_name}_change'] = round(100*(modified_spends - prev_spends) / prev_spends,2)
st.session_state['scenario'].update(channel_name, modified_spends/st.session_state['scenario'].channels[channel_name].conversion_rate)
# st.session_state['scenario'].update(channel_name, modified_spends)
# else:
# try:
# modified_spends = float(st.session_state[channel_name])
# prev_spends = st.session_state['scenario'].channels[channel_name].actual_total_spends * st.session_state['scenario'].channels[channel_name].conversion_rate
# st.session_state[f'{channel_name}_change'] = round(100*(modified_spends - prev_spends) / prev_spends,2)
# st.session_state['scenario'].update(channel_name, modified_spends/st.session_state['scenario'].channels[channel_name].conversion_rate)
# st.session_state[f'{channel_name}'] = numerize(modified_spends,1)
# except ValueError:
# st.write('Invalid input')
def select_channel_for_optimization(channel_name):
"""
Marks the given channel for optimization
"""
st.session_state['optimization_channels'][channel_name] = st.session_state[f'{channel_name}_selected']
def select_all_channels_for_optimization():
"""
Marks all the channel for optimization
"""
for channel_name in st.session_state['optimization_channels'].keys():
st.session_state[f'{channel_name}_selected' ] = st.session_state['optimze_all_channels']
st.session_state['optimization_channels'][channel_name] = st.session_state['optimze_all_channels']
def update_penalty():
"""
Updates the penalty flag for sales calculation
"""
st.session_state['scenario'].update_penalty(st.session_state['apply_penalty'])
def reset_scenario():
# print(st.session_state['default_scenario_dict'])
# st.session_state['scenario'] = class_from_dict(st.session_state['default_scenario_dict'])
# for channel in st.session_state['scenario'].channels.values():
# st.session_state[channel.name] = float(channel.actual_total_spends * channel.conversion_rate)
initialize_data()
for channel_name in st.session_state['channels_list']:
st.session_state[f'{channel_name}_selected'] = False
st.session_state[f'{channel_name}_change'] = 0
st.session_state['optimze_all_channels'] = False
def format_number(num):
if num >= 1_000_000:
return f"{num / 1_000_000:.2f}M"
elif num >= 1_000:
return f"{num / 1_000:.0f}K"
else:
return f"{num:.2f}"
def summary_plot(data, x, y, title, text_column):
fig = px.bar(data, x=x, y=y, orientation='h',
title=title, text=text_column, color='Channel_name')
# Convert text_column to numeric values
data[text_column] = pd.to_numeric(data[text_column], errors='coerce')
# Update the format of the displayed text based on magnitude
fig.update_traces(texttemplate='%{text:.2s}', textposition='outside', hovertemplate='%{x:.2s}')
fig.update_layout(xaxis_title=x, yaxis_title='Channel Name', showlegend=False)
return fig
def s_curve(x,K,b,a,x0):
return K / (1 + b*np.exp(-a*(x-x0)))
@st.cache
def plot_response_curves():
cols=4
rcs = st.session_state['rcs']
shapes = []
fig = make_subplots(rows=6, cols=cols,subplot_titles=channels_list)
for i in range(0, len(channels_list)):
col = channels_list[i]
x = st.session_state['actual_df'][col].values
spends = x.sum()
power = (np.ceil(np.log(x.max()) / np.log(10) )- 3)
x = np.linspace(0,3*x.max(),200)
K = rcs[col]['K']
b = rcs[col]['b']
a = rcs[col]['a']
x0 = rcs[col]['x0']
y = s_curve(x/10**power,K,b,a,x0)
roi = y/x
marginal_roi = a * (y)*(1-y/K)
fig.add_trace(
go.Scatter(x=52*x*st.session_state['scenario'].channels[col].conversion_rate,
y=52*y,
name=col,
customdata = np.stack((roi, marginal_roi),axis=-1),
hovertemplate="Spend:%{x:$.2s}<br>Sale:%{y:$.2s}<br>ROI:%{customdata[0]:.3f}<br>MROI:%{customdata[1]:.3f}"),
row=1+(i)//cols , col=i%cols + 1
)
fig.add_trace(go.Scatter(x=[spends*st.session_state['scenario'].channels[col].conversion_rate],
y=[52*s_curve(spends/(10**power*52),K,b,a,x0)],
name=col,
legendgroup=col,
showlegend=False,
marker=dict(color=['black'])),
row=1+(i)//cols , col=i%cols + 1)
shapes.append(go.layout.Shape(type="line",
x0=0,
y0=52*s_curve(spends/(10**power*52),K,b,a,x0),
x1=spends*st.session_state['scenario'].channels[col].conversion_rate,
y1=52*s_curve(spends/(10**power*52),K,b,a,x0),
line_width=1,
line_dash="dash",
line_color="black",
xref= f'x{i+1}',
yref= f'y{i+1}'))
shapes.append(go.layout.Shape(type="line",
x0=spends*st.session_state['scenario'].channels[col].conversion_rate,
y0=0,
x1=spends*st.session_state['scenario'].channels[col].conversion_rate,
y1=52*s_curve(spends/(10**power*52),K,b,a,x0),
line_width=1,
line_dash="dash",
line_color="black",
xref= f'x{i+1}',
yref= f'y{i+1}'))
fig.update_layout(height=1500, width=1000, title_text="Response Curves",showlegend=False,shapes=shapes)
fig.update_annotations(font_size=10)
fig.update_xaxes(title='Spends')
fig.update_yaxes(title=target)
return fig
# ======================================================== #
# ==================== HTML Components =================== #
# ======================================================== #
def generate_spending_header(heading):
return st.markdown(f"""<h2 class="spends-header">{heading}</h2>""",unsafe_allow_html=True)
# ======================================================== #
# =================== Session variables ================== #
# ======================================================== #
with open('config.yaml') as file:
config = yaml.load(file, Loader=SafeLoader)
st.session_state['config'] = config
authenticator = stauth.Authenticate(
config['credentials'],
config['cookie']['name'],
config['cookie']['key'],
config['cookie']['expiry_days'],
config['preauthorized']
)
st.session_state['authenticator'] = authenticator
name, authentication_status, username = authenticator.login('Login', 'main')
auth_status = st.session_state.get('authentication_status')
if auth_status == True:
authenticator.logout('Logout', 'main')
is_state_initiaized = st.session_state.get('initialized',False)
if not is_state_initiaized:
initialize_data()
channels_list = st.session_state['channels_list']
# ======================================================== #
# ========================== UI ========================== #
# ======================================================== #
print(list(st.session_state.keys()))
st.header('Simulation')
main_header = st.columns((2,2))
sub_header = st.columns((1,1,1,1))
_scenario = st.session_state['scenario']
with main_header[0]:
st.subheader('Actual')
with main_header[-1]:
st.subheader('Simulated')
with sub_header[0]:
st.metric(label = 'Spends', value=format_numbers(_scenario.actual_total_spends))
with sub_header[1]:
st.metric(label = target, value=format_numbers(float(_scenario.actual_total_sales),include_indicator=False))
with sub_header[2]:
st.metric(label = 'Spends',
value=format_numbers(_scenario.modified_total_spends),
delta=numerize(_scenario.delta_spends,1))
with sub_header[3]:
st.metric(label = target,
value=format_numbers(float(_scenario.modified_total_sales),include_indicator=False),
delta=numerize(_scenario.delta_sales,1))
with st.expander("Channel Spends Simulator"):
_columns = st.columns((2,4,1,1))
with _columns[0]:
st.checkbox(label='Optimize all Channels',
key=f'optimze_all_channels',
value=False,
on_change=select_all_channels_for_optimization,
)
st.number_input('Percent change of total spends',
key=f'total_spends_change',
step= 1,
on_change=update_all_spends)
with _columns[2]:
st.button('Optimize',on_click=optimize)
with _columns[3]:
st.button('Reset',on_click=reset_scenario)
st.markdown("""<hr class="spends-heading-seperator">""", unsafe_allow_html=True)
_columns = st.columns((2.5,2,1.5,1.5,1))
with _columns[0]:
generate_spending_header('Channel')
with _columns[1]:
generate_spending_header('Spends Input')
with _columns[2]:
generate_spending_header('Spends')
with _columns[3]:
generate_spending_header(target)
with _columns[4]:
generate_spending_header('Optimize')
st.markdown("""<hr class="spends-heading-seperator">""", unsafe_allow_html=True)
if 'acutual_predicted' not in st.session_state:
st.session_state['acutual_predicted']={'Channel_name':[],
'Actual_spend':[],
'Optimized_spend':[],
'Delta':[]
}
for i,channel_name in enumerate(channels_list):
_channel_class = st.session_state['scenario'].channels[channel_name]
_columns = st.columns((2.5,1.5,1.5,1.5,1))
with _columns[0]:
st.write(channel_name_formating(channel_name))
with _columns[1]:
channel_bounds = _channel_class.bounds
channel_spends = float(_channel_class.actual_total_spends )
min_value = float((1+channel_bounds[0]/100) * channel_spends )
max_value = float((1+channel_bounds[1]/100) * channel_spends )
#print(st.session_state[channel_name])
spend_input = st.text_input(channel_name,
key=channel_name,
label_visibility='collapsed',
on_change=partial(update_data,channel_name))
if not validate_input(spend_input):
st.error('Invalid input')
st.number_input('Percent change',
key=f'{channel_name}_change',
step= 1,
on_change=partial(update_data_by_percent,channel_name))
with _columns[2]:
# spends
current_channel_spends = float(_channel_class.modified_total_spends * _channel_class.conversion_rate)
actual_channel_spends = float(_channel_class.actual_total_spends * _channel_class.conversion_rate)
spends_delta = float(_channel_class.delta_spends * _channel_class.conversion_rate)
st.session_state['acutual_predicted']['Channel_name'].append(channel_name)
st.session_state['acutual_predicted']['Actual_spend'].append(actual_channel_spends)
st.session_state['acutual_predicted']['Optimized_spend'].append(current_channel_spends)
st.session_state['acutual_predicted']['Delta'].append(spends_delta)
## REMOVE
st.metric('Spends',
format_numbers(current_channel_spends),
delta=numerize(spends_delta,1),
label_visibility='collapsed')
with _columns[3]:
# sales
current_channel_sales = float(_channel_class.modified_total_sales)
actual_channel_sales = float(_channel_class.actual_total_sales)
sales_delta = float(_channel_class.delta_sales)
st.metric(target,
format_numbers(current_channel_sales,include_indicator=False),
delta=numerize(sales_delta,1),
label_visibility='collapsed')
with _columns[4]:
st.checkbox(label='select for optimization',
key=f'{channel_name}_selected',
value=False,
on_change=partial(select_channel_for_optimization,channel_name),
label_visibility='collapsed')
st.markdown("""<hr class="spends-child-seperator">""",unsafe_allow_html=True)
with st.expander("See Response Curves"):
fig = plot_response_curves()
st.plotly_chart(fig,use_container_width=True)
_columns = st.columns(2)
with _columns[0]:
st.subheader('Save Scenario')
scenario_name = st.text_input('Scenario name', key='scenario_input',placeholder='Scenario name',label_visibility='collapsed')
st.button('Save', on_click=lambda : save_scenario(scenario_name),disabled=len(st.session_state['scenario_input']) == 0)
summary_df=pd.DataFrame(st.session_state['acutual_predicted'])
summary_df.drop_duplicates(subset='Channel_name',keep='last',inplace=True)
summary_df_sorted = summary_df.sort_values(by='Delta', ascending=False)
summary_df_sorted['Delta_percent'] = np.round(((summary_df_sorted['Optimized_spend'] / summary_df_sorted['Actual_spend'])-1) * 100, 2)
with open("summary_df.pkl", "wb") as f:
pickle.dump(summary_df_sorted, f)
#st.dataframe(summary_df_sorted)
# ___columns=st.columns(3)
# with ___columns[2]:
# fig=summary_plot(summary_df_sorted, x='Delta_percent', y='Channel_name', title='Delta', text_column='Delta_percent')
# st.plotly_chart(fig,use_container_width=True)
# with ___columns[0]:
# fig=summary_plot(summary_df_sorted, x='Actual_spend', y='Channel_name', title='Actual Spend', text_column='Actual_spend')
# st.plotly_chart(fig,use_container_width=True)
# with ___columns[1]:
# fig=summary_plot(summary_df_sorted, x='Optimized_spend', y='Channel_name', title='Planned Spend', text_column='Optimized_spend')
# st.plotly_chart(fig,use_container_width=True)
elif auth_status == False:
st.error('Username/Password is incorrect')
if auth_status != True:
try:
username_forgot_pw, email_forgot_password, random_password = authenticator.forgot_password('Forgot password')
if username_forgot_pw:
st.session_state['config']['credentials']['usernames'][username_forgot_pw]['password'] = stauth.Hasher([random_password]).generate()[0]
send_email(email_forgot_password, random_password)
st.success('New password sent securely')
# Random password to be transferred to user securely
elif username_forgot_pw == False:
st.error('Username not found')
except Exception as e:
st.error(e)
|