File size: 40,208 Bytes
d8c57ad
 
 
 
95590cf
d8c57ad
 
 
 
 
95590cf
d8c57ad
 
95590cf
 
 
d8c57ad
 
 
 
 
 
95590cf
 
 
d8c57ad
95590cf
 
 
 
 
 
 
 
 
 
 
 
 
d8c57ad
bb080e9
95590cf
 
bb080e9
95590cf
 
 
 
d8c57ad
bb080e9
95590cf
d8c57ad
 
 
95590cf
d8c57ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95590cf
 
d8c57ad
 
95590cf
 
 
 
 
d8c57ad
95590cf
 
 
 
 
 
 
d8c57ad
95590cf
 
d8c57ad
95590cf
 
d8c57ad
95590cf
 
 
 
 
 
 
d8c57ad
95590cf
 
 
 
 
 
 
d8c57ad
95590cf
 
 
 
 
 
 
 
 
 
 
 
d8c57ad
95590cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8c57ad
95590cf
 
 
 
d8c57ad
95590cf
 
d8c57ad
95590cf
 
 
 
 
 
 
 
 
 
d8c57ad
95590cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bb080e9
95590cf
 
d8c57ad
95590cf
d8c57ad
 
95590cf
 
d8c57ad
 
95590cf
 
 
d8c57ad
95590cf
 
d8c57ad
95590cf
 
 
d8c57ad
95590cf
 
 
 
 
 
 
 
 
 
d8c57ad
95590cf
 
 
 
 
 
 
 
 
 
bb080e9
95590cf
 
d8c57ad
95590cf
d8c57ad
 
95590cf
 
d8c57ad
 
95590cf
 
 
 
 
 
 
 
 
d8c57ad
 
95590cf
 
 
 
 
 
 
 
 
 
 
 
 
 
d8c57ad
95590cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8c57ad
95590cf
 
 
d8c57ad
95590cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8c57ad
 
bb080e9
95590cf
 
 
d8c57ad
 
 
 
95590cf
 
d8c57ad
 
 
 
95590cf
 
 
 
 
d8c57ad
 
 
 
 
 
95590cf
d8c57ad
 
 
95590cf
d8c57ad
 
 
95590cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6d04460
95590cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8c57ad
 
 
 
95590cf
 
 
d8c57ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95590cf
d8c57ad
 
 
 
 
 
 
 
 
 
 
 
 
 
95590cf
d8c57ad
 
95590cf
d8c57ad
 
95590cf
d8c57ad
 
95590cf
 
 
 
 
 
d8c57ad
 
95590cf
 
d8c57ad
95590cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d8c57ad
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
95590cf
 
 
 
 
 
 
d8c57ad
95590cf
d8c57ad
 
 
 
 
 
 
 
 
 
95590cf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
# Importing necessary libraries
import streamlit as st

st.set_page_config(
    page_title="Data Import",
    page_icon=":shark:",
    layout="wide",
    initial_sidebar_state="collapsed",
)

import pickle
import pandas as pd
from utilities import set_header, load_local_css
import streamlit_authenticator as stauth
import yaml
from yaml import SafeLoader

load_local_css("styles.css")
set_header()


for k, v in st.session_state.items():
    if k not in ["logout", "login", "config"] and not k.startswith(
        "FormSubmitter"
    ):
        st.session_state[k] = v
with open("config.yaml") as file:
    config = yaml.load(file, Loader=SafeLoader)
    st.session_state["config"] = config
authenticator = stauth.Authenticate(
    config["credentials"],
    config["cookie"]["name"],
    config["cookie"]["key"],
    config["cookie"]["expiry_days"],
    config["preauthorized"],
)
st.session_state["authenticator"] = authenticator
name, authentication_status, username = authenticator.login("Login", "main")
auth_status = st.session_state.get("authentication_status")

if auth_status == True:
    authenticator.logout("Logout", "main")
    is_state_initiaized = st.session_state.get("initialized", False)

    if not is_state_initiaized:
        
        if 'session_name' not in st.session_state:
            st.session_state['session_name']=None


# Function to validate date column in dataframe
    def validate_date_column(df):
        try:
            # Attempt to convert the 'Date' column to datetime
            df["date"] = pd.to_datetime(df["date"], format="%d-%m-%Y")
            return True
        except:
            return False


    # Function to determine data interval
    def determine_data_interval(common_freq):
        if common_freq == 1:
            return "daily"
        elif common_freq == 7:
            return "weekly"
        elif 28 <= common_freq <= 31:
            return "monthly"
        else:
            return "irregular"


    # Function to read each uploaded Excel file into a pandas DataFrame and stores them in a dictionary
    st.cache_resource(show_spinner=False)


    def files_to_dataframes(uploaded_files):
        df_dict = {}
        for uploaded_file in uploaded_files:
            # Extract file name without extension
            file_name = uploaded_file.name.rsplit(".", 1)[0]

            # Check for duplicate file names
            if file_name in df_dict:
                st.warning(
                    f"Duplicate File: {file_name}. This file will be skipped.",
                    icon="⚠️",
                )
                continue

            # Read the file into a DataFrame
            df = pd.read_excel(uploaded_file)

            # Convert all column names to lowercase
            df.columns = df.columns.str.lower().str.strip()

            # Separate numeric and non-numeric columns
            numeric_cols = list(df.select_dtypes(include=["number"]).columns)
            non_numeric_cols = [
                col
                for col in df.select_dtypes(exclude=["number"]).columns
                if col.lower() != "date"
            ]

            # Check for 'Date' column
            if not (validate_date_column(df) and len(numeric_cols) > 0):
                st.warning(
                    f"File Name: {file_name} ➜ Please upload data with Date column in 'DD-MM-YYYY' format and at least one media/exogenous column. This file will be skipped.",
                    icon="⚠️",
                )
                continue

            # Check for interval
            common_freq = common_freq = (
                pd.Series(df["date"].unique()).diff().dt.days.dropna().mode()[0]
            )
            # Calculate the data interval (daily, weekly, monthly or irregular)
            interval = determine_data_interval(common_freq)
            if interval == "irregular":
                st.warning(
                    f"File Name: {file_name} ➜ Please upload data in daily, weekly or monthly interval. This file will be skipped.",
                    icon="⚠️",
                )
                continue

            # Store both DataFrames in the dictionary under their respective keys
            df_dict[file_name] = {
                "numeric": numeric_cols,
                "non_numeric": non_numeric_cols,
                "interval": interval,
                "df": df,
            }

        return df_dict


    # Function to adjust dataframe granularity
    def adjust_dataframe_granularity(df, current_granularity, target_granularity):
        # Set index
        df.set_index("date", inplace=True)

        # Define aggregation rules for resampling
        aggregation_rules = {
            col: "sum" if pd.api.types.is_numeric_dtype(df[col]) else "first"
            for col in df.columns
        }

        # Initialize resampled_df
        resampled_df = df
        if current_granularity == "daily" and target_granularity == "weekly":
            resampled_df = df.resample("W-MON", closed="left", label="left").agg(
                aggregation_rules
            )

        elif current_granularity == "daily" and target_granularity == "monthly":
            resampled_df = df.resample("MS", closed="left", label="left").agg(
                aggregation_rules
            )

        elif current_granularity == "daily" and target_granularity == "daily":
            resampled_df = df.resample("D").agg(aggregation_rules)

        elif current_granularity in ["weekly", "monthly"] and target_granularity == "daily":
            # For higher to lower granularity, distribute numeric and replicate non-numeric values equally across the new period
            expanded_data = []
            for _, row in df.iterrows():
                if current_granularity == "weekly":
                    period_range = pd.date_range(start=row.name, periods=7)
                elif current_granularity == "monthly":
                    period_range = pd.date_range(
                        start=row.name, periods=row.name.days_in_month
                    )

                for date in period_range:
                    new_row = {}
                    for col in df.columns:
                        if pd.api.types.is_numeric_dtype(df[col]):
                            if current_granularity == "weekly":
                                new_row[col] = row[col] / 7
                            elif current_granularity == "monthly":
                                new_row[col] = row[col] / row.name.days_in_month
                        else:
                            new_row[col] = row[col]
                    expanded_data.append((date, new_row))

            resampled_df = pd.DataFrame(
                [data for _, data in expanded_data],
                index=[date for date, _ in expanded_data],
            )

        # Reset index
        resampled_df = resampled_df.reset_index().rename(columns={"index": "date"})

        return resampled_df


    # Function to clean and extract unique values of Panel_1 and Panel_2
    st.cache_resource(show_spinner=False)


    def clean_and_extract_unique_values(files_dict, selections):
        all_panel1_values = set()
        all_panel2_values = set()

        for file_name, file_data in files_dict.items():
            df = file_data["df"]

            # 'Panel_1' and 'Panel_2' selections
            selected_panel1 = selections[file_name].get("Panel_1")
            selected_panel2 = selections[file_name].get("Panel_2")

            # Clean and standardize Panel_1 column if it exists and is selected
            if (
                selected_panel1
                and selected_panel1 != "N/A"
                and selected_panel1 in df.columns
            ):
                df[selected_panel1] = (
                    df[selected_panel1].str.lower().str.strip().str.replace("_", " ")
                )
                all_panel1_values.update(df[selected_panel1].dropna().unique())

            # Clean and standardize Panel_2 column if it exists and is selected
            if (
                selected_panel2
                and selected_panel2 != "N/A"
                and selected_panel2 in df.columns
            ):
                df[selected_panel2] = (
                    df[selected_panel2].str.lower().str.strip().str.replace("_", " ")
                )
                all_panel2_values.update(df[selected_panel2].dropna().unique())

            # Update the processed DataFrame back in the dictionary
            files_dict[file_name]["df"] = df

        return all_panel1_values, all_panel2_values


    # Function to format values for display
    st.cache_resource(show_spinner=False)


    def format_values_for_display(values_list):
        # Capitalize the first letter of each word and replace underscores with spaces
        formatted_list = [value.replace("_", " ").title() for value in values_list]
        # Join values with commas and 'and' before the last value
        if len(formatted_list) > 1:
            return ", ".join(formatted_list[:-1]) + ", and " + formatted_list[-1]
        elif formatted_list:
            return formatted_list[0]
        return "No values available"


    # Function to normalizes all data within files_dict to a daily granularity
    st.cache(show_spinner=False, allow_output_mutation=True)


    def standardize_data_to_daily(files_dict, selections):
        # Normalize all data to a daily granularity using a provided function
        files_dict = apply_granularity_to_all(files_dict, "daily", selections)

        # Update the "interval" attribute for each dataset to indicate the new granularity
        for files_name, files_data in files_dict.items():
            files_data["interval"] = "daily"

        return files_dict


    # Function to apply granularity transformation to all DataFrames in files_dict
    st.cache_resource(show_spinner=False)


    def apply_granularity_to_all(files_dict, granularity_selection, selections):
        for file_name, file_data in files_dict.items():
            df = file_data["df"].copy()

            # Handling when Panel_1 or Panel_2 might be 'N/A'
            selected_panel1 = selections[file_name].get("Panel_1")
            selected_panel2 = selections[file_name].get("Panel_2")

            # Correcting the segment selection logic & handling 'N/A'
            if selected_panel1 != "N/A" and selected_panel2 != "N/A":
                unique_combinations = df[
                    [selected_panel1, selected_panel2]
                ].drop_duplicates()
            elif selected_panel1 != "N/A":
                unique_combinations = df[[selected_panel1]].drop_duplicates()
                selected_panel2 = None  # Ensure Panel_2 is ignored if N/A
            elif selected_panel2 != "N/A":
                unique_combinations = df[[selected_panel2]].drop_duplicates()
                selected_panel1 = None  # Ensure Panel_1 is ignored if N/A
            else:
                # If both are 'N/A', process the entire dataframe as is
                df = adjust_dataframe_granularity(
                    df, file_data["interval"], granularity_selection
                )
                files_dict[file_name]["df"] = df
                continue  # Skip to the next file

            transformed_segments = []
            for _, combo in unique_combinations.iterrows():
                if selected_panel1 and selected_panel2:
                    segment = df[
                        (df[selected_panel1] == combo[selected_panel1])
                        & (df[selected_panel2] == combo[selected_panel2])
                    ]
                elif selected_panel1:
                    segment = df[df[selected_panel1] == combo[selected_panel1]]
                elif selected_panel2:
                    segment = df[df[selected_panel2] == combo[selected_panel2]]

                # Adjust granularity of the segment
                transformed_segment = adjust_dataframe_granularity(
                    segment, file_data["interval"], granularity_selection
                )
                transformed_segments.append(transformed_segment)

            # Combine all transformed segments into a single DataFrame for this file
            transformed_df = pd.concat(transformed_segments, ignore_index=True)
            files_dict[file_name]["df"] = transformed_df

        return files_dict


    # Function to create main dataframe structure
    st.cache_resource(show_spinner=False)


    def create_main_dataframe(
        files_dict, all_panel1_values, all_panel2_values, granularity_selection
    ):
        # Determine the global start and end dates across all DataFrames
        global_start = min(df["df"]["date"].min() for df in files_dict.values())
        global_end = max(df["df"]["date"].max() for df in files_dict.values())

        # Adjust the date_range generation based on the granularity_selection
        if granularity_selection == "weekly":
            # Generate a weekly range, with weeks starting on Monday
            date_range = pd.date_range(start=global_start, end=global_end, freq="W-MON")
        elif granularity_selection == "monthly":
            # Generate a monthly range, starting from the first day of each month
            date_range = pd.date_range(start=global_start, end=global_end, freq="MS")
        else:  # Default to daily if not weekly or monthly
            date_range = pd.date_range(start=global_start, end=global_end, freq="D")

        # Collect all unique Panel_1 and Panel_2 values, excluding 'N/A'
        all_panel1s = all_panel1_values
        all_panel2s = all_panel2_values

        # Dynamically build the list of dimensions (Panel_1, Panel_2) to include in the main DataFrame based on availability
        dimensions, merge_keys = [], []
        if all_panel1s:
            dimensions.append(all_panel1s)
            merge_keys.append("Panel_1")
        if all_panel2s:
            dimensions.append(all_panel2s)
            merge_keys.append("Panel_2")

        dimensions.append(date_range)  # Date range is always included
        merge_keys.append("date")  # Date range is always included

        # Create a main DataFrame template with the dimensions
        main_df = pd.MultiIndex.from_product(
            dimensions,
            names=[name for name, _ in zip(merge_keys, dimensions)],
        ).to_frame(index=False)

        return main_df.reset_index(drop=True)


    # Function to prepare and merge dataFrames
    st.cache_resource(show_spinner=False)


    def merge_into_main_df(main_df, files_dict, selections):
        for file_name, file_data in files_dict.items():
            df = file_data["df"].copy()

            # Rename selected Panel_1 and Panel_2 columns if not 'N/A'
            selected_panel1 = selections[file_name].get("Panel_1", "N/A")
            selected_panel2 = selections[file_name].get("Panel_2", "N/A")
            if selected_panel1 != "N/A":
                df.rename(columns={selected_panel1: "Panel_1"}, inplace=True)
            if selected_panel2 != "N/A":
                df.rename(columns={selected_panel2: "Panel_2"}, inplace=True)

            # Merge current DataFrame into main_df based on 'date', and where applicable, 'Panel_1' and 'Panel_2'
            merge_keys = ["date"]
            if "Panel_1" in df.columns:
                merge_keys.append("Panel_1")
            if "Panel_2" in df.columns:
                merge_keys.append("Panel_2")
            main_df = pd.merge(main_df, df, on=merge_keys, how="left")

        # After all merges, sort by 'date' and reset index for cleanliness
        sort_by = ["date"]
        if "Panel_1" in main_df.columns:
            sort_by.append("Panel_1")
        if "Panel_2" in main_df.columns:
            sort_by.append("Panel_2")
        main_df.sort_values(by=sort_by, inplace=True)
        main_df.reset_index(drop=True, inplace=True)

        return main_df


    # Function to categorize column
    def categorize_column(column_name):
        # Define keywords for each category
        internal_keywords = [
            "Price",
            "Discount",
            "product_price",
            "cost",
            "margin",
            "inventory",
            "sales",
            "revenue",
            "turnover",
            "expense",
        ]
        exogenous_keywords = [
            "GDP",
            "Tax",
            "Inflation",
            "interest_rate",
            "employment_rate",
            "exchange_rate",
            "consumer_spending",
            "retail_sales",
            "oil_prices",
            "weather",
        ]

        # Check if the column name matches any of the keywords for Internal or Exogenous categories
        for keyword in internal_keywords:
            if keyword.lower() in column_name.lower():
                return "Internal"
        for keyword in exogenous_keywords:
            if keyword.lower() in column_name.lower():
                return "Exogenous"

        # Default to Media if no match found
        return "Media"


    # Function to calculate missing stats and prepare for editable DataFrame
    st.cache_resource(show_spinner=False)


    def prepare_missing_stats_df(df):
        missing_stats = []
        for column in df.columns:
            if (
                column == "date" or column == "Panel_2" or column == "Panel_1"
            ):  # Skip Date, Panel_1 and Panel_2 column
                continue

            missing = df[column].isnull().sum()
            pct_missing = round((missing / len(df)) * 100, 2)

            # Dynamically assign category based on column name
            category = categorize_column(column)
            # category = "Media"  # Keep default bin as Media

            missing_stats.append(
                {
                    "Column": column,
                    "Missing Values": missing,
                    "Missing Percentage": pct_missing,
                    "Impute Method": "Fill with 0",  # Default value
                    "Category": category,
                }
            )
        stats_df = pd.DataFrame(missing_stats)

        return stats_df


    # Function to add API DataFrame details to the files dictionary
    st.cache_resource(show_spinner=False)


    def add_api_dataframe_to_dict(main_df, files_dict):
        files_dict["API"] = {
            "numeric": list(main_df.select_dtypes(include=["number"]).columns),
            "non_numeric": [
                col
                for col in main_df.select_dtypes(exclude=["number"]).columns
                if col.lower() != "date"
            ],
            "interval": determine_data_interval(
                pd.Series(main_df["date"].unique()).diff().dt.days.dropna().mode()[0]
            ),
            "df": main_df,
        }

        return files_dict


    # Function to reads an API into a DataFrame, parsing specified columns as datetime
    @st.cache_resource(show_spinner=False)
    def read_API_data():
        return pd.read_excel("upf_data_converted_randomized_resp_metrics.xlsx", parse_dates=["Date"])


    # Function to set the 'Panel_1_Panel_2_Selected' session state variable to False
    def set_Panel_1_Panel_2_Selected_false():
        st.session_state["Panel_1_Panel_2_Selected"] = False


    # Function to serialize and save the objects into a pickle file
    @st.cache_resource(show_spinner=False)
    def save_to_pickle(file_path, final_df, bin_dict):
        # Open the file in write-binary mode and dump the objects
        with open(file_path, "wb") as f:
            pickle.dump({"final_df": final_df, "bin_dict": bin_dict}, f)
            # Data is now saved to file


    # Function to processes the merged_df DataFrame based on operations defined in edited_df
    @st.cache_resource(show_spinner=False)
    def process_dataframes(merged_df, edited_df, edited_stats_df):
        # Ensure there are operations defined by the user
        if edited_df.empty:
            return merged_df, edited_stats_df  # No operations to apply

        # Perform operations as defined by the user
        for index, row in edited_df.iterrows():
            result_column_name = f"{row['Column 1']}{row['Operator']}{row['Column 2']}"
            col1 = row["Column 1"]
            col2 = row["Column 2"]
            op = row["Operator"]

            # Apply the specified operation
            if op == "+":
                merged_df[result_column_name] = merged_df[col1] + merged_df[col2]
            elif op == "-":
                merged_df[result_column_name] = merged_df[col1] - merged_df[col2]
            elif op == "*":
                merged_df[result_column_name] = merged_df[col1] * merged_df[col2]
            elif op == "/":
                merged_df[result_column_name] = merged_df[col1] / merged_df[col2].replace(
                    0, 1e-9
                )

            # Add summary of operation to edited_stats_df
            new_row = {
                "Column": result_column_name,
                "Missing Values": None,
                "Missing Percentage": None,
                "Impute Method": None,
                "Category": row["Category"],
            }
            new_row_df = pd.DataFrame([new_row])

            # Use pd.concat to add the new_row_df to edited_stats_df
            edited_stats_df = pd.concat(
                [edited_stats_df, new_row_df], ignore_index=True, axis=0
            )

        # Combine column names from edited_df for cleanup
        combined_columns = set(edited_df["Column 1"]).union(set(edited_df["Column 2"]))

        # Filter out rows in edited_stats_df and drop columns from merged_df
        edited_stats_df = edited_stats_df[~edited_stats_df["Column"].isin(combined_columns)]
        merged_df.drop(columns=list(combined_columns), errors="ignore", inplace=True)

        return merged_df, edited_stats_df


    # Function to prepare a list of numeric column names and initialize an empty DataFrame with predefined structure
    st.cache_resource(show_spinner=False)


    def prepare_numeric_columns_and_default_df(merged_df, edited_stats_df):
        # Get columns categorized as 'Response Metrics'
        columns_response_metrics = edited_stats_df[
            edited_stats_df["Category"] == "Response Metrics"
        ]["Column"].tolist()

        # Filter numeric columns, excluding those categorized as 'Response Metrics'
        numeric_columns = [
            col
            for col in merged_df.select_dtypes(include=["number"]).columns
            if col not in columns_response_metrics
        ]

        # Define the structure of the empty DataFrame
        data = {
            "Column 1": pd.Series([], dtype="str"),
            "Operator": pd.Series([], dtype="str"),
            "Column 2": pd.Series([], dtype="str"),
            "Category": pd.Series([], dtype="str"),
        }
        default_df = pd.DataFrame(data)

        return numeric_columns, default_df


    # Initialize 'final_df' in session state
    if "final_df" not in st.session_state:
        st.session_state["final_df"] = pd.DataFrame()

    # Initialize 'bin_dict' in session state
    if "bin_dict" not in st.session_state:
        st.session_state["bin_dict"] = {}

    # Initialize 'Panel_1_Panel_2_Selected' in session state
    if "Panel_1_Panel_2_Selected" not in st.session_state:
        st.session_state["Panel_1_Panel_2_Selected"] = False


    # Page Title
    st.write("")  # Top padding
    st.title("Data Import")


    #########################################################################################################################################################
    # Create a dictionary to hold all DataFrames and collect user input to specify "Panel_2" and "Panel_1" columns for each file
    #########################################################################################################################################################


    # Read the Excel file, parsing 'Date' column as datetime
    main_df = read_API_data()

    # Convert all column names to lowercase
    main_df.columns = main_df.columns.str.lower().str.strip()

    # File uploader
    uploaded_files = st.file_uploader(
        "Upload additional data",
        type=["xlsx"],
        accept_multiple_files=True,
        on_change=set_Panel_1_Panel_2_Selected_false,
    )

    # Custom HTML for upload instructions
    recommendation_html = f"""
    <div style="text-align: justify;">
    <strong>Recommendation:</strong> For optimal processing, please ensure that all uploaded datasets including panel, media, internal, and exogenous data adhere to the following guidelines: Each dataset must include a <code>Date</code> column formatted as <code>DD-MM-YYYY</code>, be free of missing values.
    </div>
    """
    st.markdown(recommendation_html, unsafe_allow_html=True)

    # Choose Desired Granularity
    st.markdown("#### Choose Desired Granularity")
    # Granularity Selection
    granularity_selection = st.selectbox(
        "Choose Date Granularity",
        ["Daily", "Weekly", "Monthly"],
        label_visibility="collapsed",
        on_change=set_Panel_1_Panel_2_Selected_false,
    )
    granularity_selection = str(granularity_selection).lower()

    # Convert files to dataframes
    files_dict = files_to_dataframes(uploaded_files)

    # Add API Dataframe
    if main_df is not None:
        files_dict = add_api_dataframe_to_dict(main_df, files_dict)

    # Display a warning message if no files have been uploaded and halt further execution
    if not files_dict:
        st.warning(
            "Please upload at least one file to proceed.",
            icon="⚠️",
        )
        st.stop()  # Halts further execution until file is uploaded


    # Select Panel_1 and Panel_2 columns
    st.markdown("#### Select Panel columns")
    selections = {}
    with st.expander("Select Panel columns", expanded=False):
        count = 0  # Initialize counter to manage the visibility of labels and keys
        for file_name, file_data in files_dict.items():
            # Determine visibility of the label based on the count
            if count == 0:
                label_visibility = "visible"
            else:
                label_visibility = "collapsed"

            # Extract non-numeric columns
            non_numeric_cols = file_data["non_numeric"]

            # Prepare Panel_1 and Panel_2 values for dropdown, adding "N/A" as an option
            panel1_values = non_numeric_cols + ["N/A"]
            panel2_values = non_numeric_cols + ["N/A"]

            # Skip if only one option is available
            if len(panel1_values) == 1 and len(panel2_values) == 1:
                selected_panel1, selected_panel2 = "N/A", "N/A"
                # Update the selections for Panel_1 and Panel_2 for the current file
                selections[file_name] = {
                    "Panel_1": selected_panel1,
                    "Panel_2": selected_panel2,
                }
                continue

            # Create layout columns for File Name, Panel_2, and Panel_1 selections
            file_name_col, Panel_1_col, Panel_2_col = st.columns([2, 4, 4])

            with file_name_col:
                # Display "File Name" label only for the first file
                if count == 0:
                    st.write("File Name")
                else:
                    st.write("")
                st.write(file_name)  # Display the file name

            with Panel_1_col:
                # Display a selectbox for Panel_1 values
                selected_panel1 = st.selectbox(
                    "Select Panel Level 1",
                    panel2_values,
                    on_change=set_Panel_1_Panel_2_Selected_false,
                    label_visibility=label_visibility,  # Control visibility of the label
                    key=f"Panel_1_selectbox{count}",  # Ensure unique key for each selectbox
                )

            with Panel_2_col:
                # Display a selectbox for Panel_2 values
                selected_panel2 = st.selectbox(
                    "Select Panel Level 2",
                    panel1_values,
                    on_change=set_Panel_1_Panel_2_Selected_false,
                    label_visibility=label_visibility,  # Control visibility of the label
                    key=f"Panel_2_selectbox{count}",  # Ensure unique key for each selectbox
                )

            # Skip processing if the same column is selected for both Panel_1 and Panel_2 due to potential data integrity issues
            if selected_panel2 == selected_panel1 and not (
                selected_panel2 == "N/A" and selected_panel1 == "N/A"
            ):
                st.warning(
                    f"File: {file_name} → The same column cannot serve as both Panel_1 and Panel_2. Please adjust your selections.",
                )
                selected_panel1, selected_panel2 = "N/A", "N/A"
                st.stop()

            # Update the selections for Panel_1 and Panel_2 for the current file
            selections[file_name] = {
                "Panel_1": selected_panel1,
                "Panel_2": selected_panel2,
            }

            count += 1  # Increment the counter after processing each file

        # Accept Panel_1 and Panel_2 selection
        if st.button("Accept and Process", use_container_width=True):

            # Normalize all data to a daily granularity. This initial standardization simplifies subsequent conversions to other levels of granularity
            with st.spinner("Processing..."):
                files_dict = standardize_data_to_daily(files_dict, selections)

                # Convert all data to daily level granularity
                files_dict = apply_granularity_to_all(
                    files_dict, granularity_selection, selections
                )

            # Update the 'files_dict' in the session state
            st.session_state["files_dict"] = files_dict

            # Set a flag in the session state to indicate that selection has been made
            st.session_state["Panel_1_Panel_2_Selected"] = True


    #########################################################################################################################################################
    # Display unique Panel_1 and Panel_2 values
    #########################################################################################################################################################


    # Halts further execution until Panel_1 and Panel_2 columns are selected
    if "files_dict" in st.session_state and st.session_state["Panel_1_Panel_2_Selected"]:
        files_dict = st.session_state["files_dict"]
    else:
        st.stop()

    # Set to store unique values of Panel_1 and Panel_2
    with st.spinner("Fetching Panel values..."):
        all_panel1_values, all_panel2_values = clean_and_extract_unique_values(
            files_dict, selections
        )

        # List of Panel_1 and Panel_2 columns unique values
        list_of_all_panel1_values = list(all_panel1_values)
        list_of_all_panel2_values = list(all_panel2_values)

        # Format Panel_1 and Panel_2 values for display
        formatted_panel1_values = format_values_for_display(list_of_all_panel1_values)
        formatted_panel2_values = format_values_for_display(list_of_all_panel2_values)

    # Unique Panel_1 and Panel_2 values
    st.markdown("#### Unique Panel values")
    # Display Panel_1 and Panel_2 values
    with st.expander("Unique Panel values"):
        st.write("")
        st.markdown(
            f"""
        <style>
        .justify-text {{
        text-align: justify;
        }}
        </style>
        <div class="justify-text">
        <strong>Panel Level 1 Values:</strong> {formatted_panel1_values}<br>
        <strong>Panel Level 2 Values:</strong> {formatted_panel2_values}
        </div>
        """,
            unsafe_allow_html=True,
        )

        # Display total Panel_1 and Panel_2
        st.write("")
        st.markdown(
            f"""
        <div style="text-align: justify;">
            <strong>Number of Level 1 Panels detected:</strong> {len(list_of_all_panel1_values)}<br>
            <strong>Number of Level 2 Panels detected:</strong> {len(list_of_all_panel2_values)}
        </div>
        """,
            unsafe_allow_html=True,
        )
        st.write("")


    #########################################################################################################################################################
    # Merge all DataFrames
    #########################################################################################################################################################


    # Merge all DataFrames selected
    main_df = create_main_dataframe(
        files_dict, all_panel1_values, all_panel2_values, granularity_selection
    )
    merged_df = merge_into_main_df(main_df, files_dict, selections)


    #########################################################################################################################################################
    # Categorize Variables and Impute Missing Values
    #########################################################################################################################################################


    # Create an editable DataFrame in Streamlit
    st.markdown("#### Select Variables Category & Impute Missing Values")

    # Prepare missing stats DataFrame for editing
    missing_stats_df = prepare_missing_stats_df(merged_df)

    edited_stats_df = st.data_editor(
        missing_stats_df,
        column_config={
            "Impute Method": st.column_config.SelectboxColumn(
                options=[
                    "Drop Column",
                    "Fill with Mean",
                    "Fill with Median",
                    "Fill with 0",
                ],
                required=True,
                default="Fill with 0",
            ),
            "Category": st.column_config.SelectboxColumn(
                options=[
                    "Media",
                    "Exogenous",
                    "Internal",
                    "Response Metrics",
                ],
                required=True,
                default="Media",
            ),
        },
        disabled=["Column", "Missing Values", "Missing Percentage"],
        hide_index=True,
        use_container_width=True,
    )

    # Apply changes based on edited DataFrame
    for i, row in edited_stats_df.iterrows():
        column = row["Column"]
        if row["Impute Method"] == "Drop Column":
            merged_df.drop(columns=[column], inplace=True)

        elif row["Impute Method"] == "Fill with Mean":
            merged_df[column].fillna(merged_df[column].mean(), inplace=True)

        elif row["Impute Method"] == "Fill with Median":
            merged_df[column].fillna(merged_df[column].median(), inplace=True)

        elif row["Impute Method"] == "Fill with 0":
            merged_df[column].fillna(0, inplace=True)


    #########################################################################################################################################################
    # Group columns
    #########################################################################################################################################################


    # Display Group columns header
    st.markdown("#### Feature engineering")

    # Prepare the numeric columns and an empty DataFrame for user input
    numeric_columns, default_df = prepare_numeric_columns_and_default_df(
        merged_df, edited_stats_df
    )

    # Display editable Dataframe
    edited_df = st.data_editor(
        default_df,
        column_config={
            "Column 1": st.column_config.SelectboxColumn(
                options=numeric_columns,
                required=True,
                default=numeric_columns[0],
                width=400,
            ),
            "Operator": st.column_config.SelectboxColumn(
                options=["+", "-", "*", "/"],
                required=True,
                default="+",
                width=100,
            ),
            "Column 2": st.column_config.SelectboxColumn(
                options=numeric_columns,
                required=True,
                default=numeric_columns[0],
                width=400,
            ),
            "Category": st.column_config.SelectboxColumn(
                options=[
                    "Media",
                    "Exogenous",
                    "Internal",
                    "Response Metrics",
                ],
                required=True,
                default="Media",
                width=200,
            ),
        },
        num_rows="dynamic",
    )

    # Process the DataFrame based on user inputs and operations specified in edited_df
    final_df, edited_stats_df = process_dataframes(merged_df, edited_df, edited_stats_df)


    #########################################################################################################################################################
    # Display the Final DataFrame and variables
    #########################################################################################################################################################


    # Display the Final DataFrame and variables
    st.markdown("#### Final DataFrame")
    st.dataframe(final_df, hide_index=True)

    # Initialize an empty dictionary to hold categories and their variables
    category_dict = {}

    # Iterate over each row in the edited DataFrame to populate the dictionary
    for i, row in edited_stats_df.iterrows():
        column = row["Column"]
        category = row["Category"]  # The category chosen by the user for this variable

        # Check if the category already exists in the dictionary
        if category not in category_dict:
            # If not, initialize it with the current column as its first element
            category_dict[category] = [column]
        else:
            # If it exists, append the current column to the list of variables under this category
            category_dict[category].append(column)

    # Add Date, Panel_1 and Panel_12 in category dictionary
    category_dict.update({"Date": ["date"]})
    if "Panel_1" in final_df.columns:
        category_dict["Panel Level 1"] = ["Panel_1"]
    if "Panel_2" in final_df.columns:
        category_dict["Panel Level 2"] = ["Panel_2"]

    # Display the dictionary
    st.markdown("#### Variable Category")
    for category, variables in category_dict.items():
        # Check if there are multiple variables to handle "and" insertion correctly
        if len(variables) > 1:
            # Join all but the last variable with ", ", then add " and " before the last variable
            variables_str = ", ".join(variables[:-1]) + " and " + variables[-1]
        else:
            # If there's only one variable, no need for "and"
            variables_str = variables[0]

        # Display the category and its variables in the desired format
        st.markdown(
            f"<div style='text-align: justify;'><strong>{category}:</strong> {variables_str}</div>",
            unsafe_allow_html=True,
        )

    # Function to check if Response Metrics is selected
    st.write("")
    response_metrics_col = category_dict.get("Response Metrics", [])
    if len(response_metrics_col) == 0:
        st.warning("Please select Response Metrics column", icon="⚠️")
        st.stop()
    # elif len(response_metrics_col) > 1:
    #     st.warning("Please select only one Response Metrics column", icon="⚠️")
    #     st.stop()

    # Store final dataframe and bin dictionary into session state
    st.session_state["final_df"], st.session_state["bin_dict"] = final_df, category_dict

    # Save the DataFrame and dictionary from the session state to the pickle file
    if st.button("Accept and Save", use_container_width=True):
        save_to_pickle(
            "data_import.pkl", st.session_state["final_df"], st.session_state["bin_dict"]
        )
        st.toast("💾 Saved Successfully!")