Spaces:
Sleeping
Sleeping
File size: 40,208 Bytes
d8c57ad 95590cf d8c57ad 95590cf d8c57ad 95590cf d8c57ad 95590cf d8c57ad 95590cf d8c57ad bb080e9 95590cf bb080e9 95590cf d8c57ad bb080e9 95590cf d8c57ad 95590cf d8c57ad 95590cf d8c57ad 95590cf d8c57ad 95590cf d8c57ad 95590cf d8c57ad 95590cf d8c57ad 95590cf d8c57ad 95590cf d8c57ad 95590cf d8c57ad 95590cf d8c57ad 95590cf d8c57ad 95590cf d8c57ad 95590cf d8c57ad 95590cf bb080e9 95590cf d8c57ad 95590cf d8c57ad 95590cf d8c57ad 95590cf d8c57ad 95590cf d8c57ad 95590cf d8c57ad 95590cf d8c57ad 95590cf bb080e9 95590cf d8c57ad 95590cf d8c57ad 95590cf d8c57ad 95590cf d8c57ad 95590cf d8c57ad 95590cf d8c57ad 95590cf d8c57ad 95590cf d8c57ad bb080e9 95590cf d8c57ad 95590cf d8c57ad 95590cf d8c57ad 95590cf d8c57ad 95590cf d8c57ad 95590cf 6d04460 95590cf d8c57ad 95590cf d8c57ad 95590cf d8c57ad 95590cf d8c57ad 95590cf d8c57ad 95590cf d8c57ad 95590cf d8c57ad 95590cf d8c57ad 95590cf d8c57ad 95590cf d8c57ad 95590cf d8c57ad 95590cf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 |
# Importing necessary libraries
import streamlit as st
st.set_page_config(
page_title="Data Import",
page_icon=":shark:",
layout="wide",
initial_sidebar_state="collapsed",
)
import pickle
import pandas as pd
from utilities import set_header, load_local_css
import streamlit_authenticator as stauth
import yaml
from yaml import SafeLoader
load_local_css("styles.css")
set_header()
for k, v in st.session_state.items():
if k not in ["logout", "login", "config"] and not k.startswith(
"FormSubmitter"
):
st.session_state[k] = v
with open("config.yaml") as file:
config = yaml.load(file, Loader=SafeLoader)
st.session_state["config"] = config
authenticator = stauth.Authenticate(
config["credentials"],
config["cookie"]["name"],
config["cookie"]["key"],
config["cookie"]["expiry_days"],
config["preauthorized"],
)
st.session_state["authenticator"] = authenticator
name, authentication_status, username = authenticator.login("Login", "main")
auth_status = st.session_state.get("authentication_status")
if auth_status == True:
authenticator.logout("Logout", "main")
is_state_initiaized = st.session_state.get("initialized", False)
if not is_state_initiaized:
if 'session_name' not in st.session_state:
st.session_state['session_name']=None
# Function to validate date column in dataframe
def validate_date_column(df):
try:
# Attempt to convert the 'Date' column to datetime
df["date"] = pd.to_datetime(df["date"], format="%d-%m-%Y")
return True
except:
return False
# Function to determine data interval
def determine_data_interval(common_freq):
if common_freq == 1:
return "daily"
elif common_freq == 7:
return "weekly"
elif 28 <= common_freq <= 31:
return "monthly"
else:
return "irregular"
# Function to read each uploaded Excel file into a pandas DataFrame and stores them in a dictionary
st.cache_resource(show_spinner=False)
def files_to_dataframes(uploaded_files):
df_dict = {}
for uploaded_file in uploaded_files:
# Extract file name without extension
file_name = uploaded_file.name.rsplit(".", 1)[0]
# Check for duplicate file names
if file_name in df_dict:
st.warning(
f"Duplicate File: {file_name}. This file will be skipped.",
icon="⚠️",
)
continue
# Read the file into a DataFrame
df = pd.read_excel(uploaded_file)
# Convert all column names to lowercase
df.columns = df.columns.str.lower().str.strip()
# Separate numeric and non-numeric columns
numeric_cols = list(df.select_dtypes(include=["number"]).columns)
non_numeric_cols = [
col
for col in df.select_dtypes(exclude=["number"]).columns
if col.lower() != "date"
]
# Check for 'Date' column
if not (validate_date_column(df) and len(numeric_cols) > 0):
st.warning(
f"File Name: {file_name} ➜ Please upload data with Date column in 'DD-MM-YYYY' format and at least one media/exogenous column. This file will be skipped.",
icon="⚠️",
)
continue
# Check for interval
common_freq = common_freq = (
pd.Series(df["date"].unique()).diff().dt.days.dropna().mode()[0]
)
# Calculate the data interval (daily, weekly, monthly or irregular)
interval = determine_data_interval(common_freq)
if interval == "irregular":
st.warning(
f"File Name: {file_name} ➜ Please upload data in daily, weekly or monthly interval. This file will be skipped.",
icon="⚠️",
)
continue
# Store both DataFrames in the dictionary under their respective keys
df_dict[file_name] = {
"numeric": numeric_cols,
"non_numeric": non_numeric_cols,
"interval": interval,
"df": df,
}
return df_dict
# Function to adjust dataframe granularity
def adjust_dataframe_granularity(df, current_granularity, target_granularity):
# Set index
df.set_index("date", inplace=True)
# Define aggregation rules for resampling
aggregation_rules = {
col: "sum" if pd.api.types.is_numeric_dtype(df[col]) else "first"
for col in df.columns
}
# Initialize resampled_df
resampled_df = df
if current_granularity == "daily" and target_granularity == "weekly":
resampled_df = df.resample("W-MON", closed="left", label="left").agg(
aggregation_rules
)
elif current_granularity == "daily" and target_granularity == "monthly":
resampled_df = df.resample("MS", closed="left", label="left").agg(
aggregation_rules
)
elif current_granularity == "daily" and target_granularity == "daily":
resampled_df = df.resample("D").agg(aggregation_rules)
elif current_granularity in ["weekly", "monthly"] and target_granularity == "daily":
# For higher to lower granularity, distribute numeric and replicate non-numeric values equally across the new period
expanded_data = []
for _, row in df.iterrows():
if current_granularity == "weekly":
period_range = pd.date_range(start=row.name, periods=7)
elif current_granularity == "monthly":
period_range = pd.date_range(
start=row.name, periods=row.name.days_in_month
)
for date in period_range:
new_row = {}
for col in df.columns:
if pd.api.types.is_numeric_dtype(df[col]):
if current_granularity == "weekly":
new_row[col] = row[col] / 7
elif current_granularity == "monthly":
new_row[col] = row[col] / row.name.days_in_month
else:
new_row[col] = row[col]
expanded_data.append((date, new_row))
resampled_df = pd.DataFrame(
[data for _, data in expanded_data],
index=[date for date, _ in expanded_data],
)
# Reset index
resampled_df = resampled_df.reset_index().rename(columns={"index": "date"})
return resampled_df
# Function to clean and extract unique values of Panel_1 and Panel_2
st.cache_resource(show_spinner=False)
def clean_and_extract_unique_values(files_dict, selections):
all_panel1_values = set()
all_panel2_values = set()
for file_name, file_data in files_dict.items():
df = file_data["df"]
# 'Panel_1' and 'Panel_2' selections
selected_panel1 = selections[file_name].get("Panel_1")
selected_panel2 = selections[file_name].get("Panel_2")
# Clean and standardize Panel_1 column if it exists and is selected
if (
selected_panel1
and selected_panel1 != "N/A"
and selected_panel1 in df.columns
):
df[selected_panel1] = (
df[selected_panel1].str.lower().str.strip().str.replace("_", " ")
)
all_panel1_values.update(df[selected_panel1].dropna().unique())
# Clean and standardize Panel_2 column if it exists and is selected
if (
selected_panel2
and selected_panel2 != "N/A"
and selected_panel2 in df.columns
):
df[selected_panel2] = (
df[selected_panel2].str.lower().str.strip().str.replace("_", " ")
)
all_panel2_values.update(df[selected_panel2].dropna().unique())
# Update the processed DataFrame back in the dictionary
files_dict[file_name]["df"] = df
return all_panel1_values, all_panel2_values
# Function to format values for display
st.cache_resource(show_spinner=False)
def format_values_for_display(values_list):
# Capitalize the first letter of each word and replace underscores with spaces
formatted_list = [value.replace("_", " ").title() for value in values_list]
# Join values with commas and 'and' before the last value
if len(formatted_list) > 1:
return ", ".join(formatted_list[:-1]) + ", and " + formatted_list[-1]
elif formatted_list:
return formatted_list[0]
return "No values available"
# Function to normalizes all data within files_dict to a daily granularity
st.cache(show_spinner=False, allow_output_mutation=True)
def standardize_data_to_daily(files_dict, selections):
# Normalize all data to a daily granularity using a provided function
files_dict = apply_granularity_to_all(files_dict, "daily", selections)
# Update the "interval" attribute for each dataset to indicate the new granularity
for files_name, files_data in files_dict.items():
files_data["interval"] = "daily"
return files_dict
# Function to apply granularity transformation to all DataFrames in files_dict
st.cache_resource(show_spinner=False)
def apply_granularity_to_all(files_dict, granularity_selection, selections):
for file_name, file_data in files_dict.items():
df = file_data["df"].copy()
# Handling when Panel_1 or Panel_2 might be 'N/A'
selected_panel1 = selections[file_name].get("Panel_1")
selected_panel2 = selections[file_name].get("Panel_2")
# Correcting the segment selection logic & handling 'N/A'
if selected_panel1 != "N/A" and selected_panel2 != "N/A":
unique_combinations = df[
[selected_panel1, selected_panel2]
].drop_duplicates()
elif selected_panel1 != "N/A":
unique_combinations = df[[selected_panel1]].drop_duplicates()
selected_panel2 = None # Ensure Panel_2 is ignored if N/A
elif selected_panel2 != "N/A":
unique_combinations = df[[selected_panel2]].drop_duplicates()
selected_panel1 = None # Ensure Panel_1 is ignored if N/A
else:
# If both are 'N/A', process the entire dataframe as is
df = adjust_dataframe_granularity(
df, file_data["interval"], granularity_selection
)
files_dict[file_name]["df"] = df
continue # Skip to the next file
transformed_segments = []
for _, combo in unique_combinations.iterrows():
if selected_panel1 and selected_panel2:
segment = df[
(df[selected_panel1] == combo[selected_panel1])
& (df[selected_panel2] == combo[selected_panel2])
]
elif selected_panel1:
segment = df[df[selected_panel1] == combo[selected_panel1]]
elif selected_panel2:
segment = df[df[selected_panel2] == combo[selected_panel2]]
# Adjust granularity of the segment
transformed_segment = adjust_dataframe_granularity(
segment, file_data["interval"], granularity_selection
)
transformed_segments.append(transformed_segment)
# Combine all transformed segments into a single DataFrame for this file
transformed_df = pd.concat(transformed_segments, ignore_index=True)
files_dict[file_name]["df"] = transformed_df
return files_dict
# Function to create main dataframe structure
st.cache_resource(show_spinner=False)
def create_main_dataframe(
files_dict, all_panel1_values, all_panel2_values, granularity_selection
):
# Determine the global start and end dates across all DataFrames
global_start = min(df["df"]["date"].min() for df in files_dict.values())
global_end = max(df["df"]["date"].max() for df in files_dict.values())
# Adjust the date_range generation based on the granularity_selection
if granularity_selection == "weekly":
# Generate a weekly range, with weeks starting on Monday
date_range = pd.date_range(start=global_start, end=global_end, freq="W-MON")
elif granularity_selection == "monthly":
# Generate a monthly range, starting from the first day of each month
date_range = pd.date_range(start=global_start, end=global_end, freq="MS")
else: # Default to daily if not weekly or monthly
date_range = pd.date_range(start=global_start, end=global_end, freq="D")
# Collect all unique Panel_1 and Panel_2 values, excluding 'N/A'
all_panel1s = all_panel1_values
all_panel2s = all_panel2_values
# Dynamically build the list of dimensions (Panel_1, Panel_2) to include in the main DataFrame based on availability
dimensions, merge_keys = [], []
if all_panel1s:
dimensions.append(all_panel1s)
merge_keys.append("Panel_1")
if all_panel2s:
dimensions.append(all_panel2s)
merge_keys.append("Panel_2")
dimensions.append(date_range) # Date range is always included
merge_keys.append("date") # Date range is always included
# Create a main DataFrame template with the dimensions
main_df = pd.MultiIndex.from_product(
dimensions,
names=[name for name, _ in zip(merge_keys, dimensions)],
).to_frame(index=False)
return main_df.reset_index(drop=True)
# Function to prepare and merge dataFrames
st.cache_resource(show_spinner=False)
def merge_into_main_df(main_df, files_dict, selections):
for file_name, file_data in files_dict.items():
df = file_data["df"].copy()
# Rename selected Panel_1 and Panel_2 columns if not 'N/A'
selected_panel1 = selections[file_name].get("Panel_1", "N/A")
selected_panel2 = selections[file_name].get("Panel_2", "N/A")
if selected_panel1 != "N/A":
df.rename(columns={selected_panel1: "Panel_1"}, inplace=True)
if selected_panel2 != "N/A":
df.rename(columns={selected_panel2: "Panel_2"}, inplace=True)
# Merge current DataFrame into main_df based on 'date', and where applicable, 'Panel_1' and 'Panel_2'
merge_keys = ["date"]
if "Panel_1" in df.columns:
merge_keys.append("Panel_1")
if "Panel_2" in df.columns:
merge_keys.append("Panel_2")
main_df = pd.merge(main_df, df, on=merge_keys, how="left")
# After all merges, sort by 'date' and reset index for cleanliness
sort_by = ["date"]
if "Panel_1" in main_df.columns:
sort_by.append("Panel_1")
if "Panel_2" in main_df.columns:
sort_by.append("Panel_2")
main_df.sort_values(by=sort_by, inplace=True)
main_df.reset_index(drop=True, inplace=True)
return main_df
# Function to categorize column
def categorize_column(column_name):
# Define keywords for each category
internal_keywords = [
"Price",
"Discount",
"product_price",
"cost",
"margin",
"inventory",
"sales",
"revenue",
"turnover",
"expense",
]
exogenous_keywords = [
"GDP",
"Tax",
"Inflation",
"interest_rate",
"employment_rate",
"exchange_rate",
"consumer_spending",
"retail_sales",
"oil_prices",
"weather",
]
# Check if the column name matches any of the keywords for Internal or Exogenous categories
for keyword in internal_keywords:
if keyword.lower() in column_name.lower():
return "Internal"
for keyword in exogenous_keywords:
if keyword.lower() in column_name.lower():
return "Exogenous"
# Default to Media if no match found
return "Media"
# Function to calculate missing stats and prepare for editable DataFrame
st.cache_resource(show_spinner=False)
def prepare_missing_stats_df(df):
missing_stats = []
for column in df.columns:
if (
column == "date" or column == "Panel_2" or column == "Panel_1"
): # Skip Date, Panel_1 and Panel_2 column
continue
missing = df[column].isnull().sum()
pct_missing = round((missing / len(df)) * 100, 2)
# Dynamically assign category based on column name
category = categorize_column(column)
# category = "Media" # Keep default bin as Media
missing_stats.append(
{
"Column": column,
"Missing Values": missing,
"Missing Percentage": pct_missing,
"Impute Method": "Fill with 0", # Default value
"Category": category,
}
)
stats_df = pd.DataFrame(missing_stats)
return stats_df
# Function to add API DataFrame details to the files dictionary
st.cache_resource(show_spinner=False)
def add_api_dataframe_to_dict(main_df, files_dict):
files_dict["API"] = {
"numeric": list(main_df.select_dtypes(include=["number"]).columns),
"non_numeric": [
col
for col in main_df.select_dtypes(exclude=["number"]).columns
if col.lower() != "date"
],
"interval": determine_data_interval(
pd.Series(main_df["date"].unique()).diff().dt.days.dropna().mode()[0]
),
"df": main_df,
}
return files_dict
# Function to reads an API into a DataFrame, parsing specified columns as datetime
@st.cache_resource(show_spinner=False)
def read_API_data():
return pd.read_excel("upf_data_converted_randomized_resp_metrics.xlsx", parse_dates=["Date"])
# Function to set the 'Panel_1_Panel_2_Selected' session state variable to False
def set_Panel_1_Panel_2_Selected_false():
st.session_state["Panel_1_Panel_2_Selected"] = False
# Function to serialize and save the objects into a pickle file
@st.cache_resource(show_spinner=False)
def save_to_pickle(file_path, final_df, bin_dict):
# Open the file in write-binary mode and dump the objects
with open(file_path, "wb") as f:
pickle.dump({"final_df": final_df, "bin_dict": bin_dict}, f)
# Data is now saved to file
# Function to processes the merged_df DataFrame based on operations defined in edited_df
@st.cache_resource(show_spinner=False)
def process_dataframes(merged_df, edited_df, edited_stats_df):
# Ensure there are operations defined by the user
if edited_df.empty:
return merged_df, edited_stats_df # No operations to apply
# Perform operations as defined by the user
for index, row in edited_df.iterrows():
result_column_name = f"{row['Column 1']}{row['Operator']}{row['Column 2']}"
col1 = row["Column 1"]
col2 = row["Column 2"]
op = row["Operator"]
# Apply the specified operation
if op == "+":
merged_df[result_column_name] = merged_df[col1] + merged_df[col2]
elif op == "-":
merged_df[result_column_name] = merged_df[col1] - merged_df[col2]
elif op == "*":
merged_df[result_column_name] = merged_df[col1] * merged_df[col2]
elif op == "/":
merged_df[result_column_name] = merged_df[col1] / merged_df[col2].replace(
0, 1e-9
)
# Add summary of operation to edited_stats_df
new_row = {
"Column": result_column_name,
"Missing Values": None,
"Missing Percentage": None,
"Impute Method": None,
"Category": row["Category"],
}
new_row_df = pd.DataFrame([new_row])
# Use pd.concat to add the new_row_df to edited_stats_df
edited_stats_df = pd.concat(
[edited_stats_df, new_row_df], ignore_index=True, axis=0
)
# Combine column names from edited_df for cleanup
combined_columns = set(edited_df["Column 1"]).union(set(edited_df["Column 2"]))
# Filter out rows in edited_stats_df and drop columns from merged_df
edited_stats_df = edited_stats_df[~edited_stats_df["Column"].isin(combined_columns)]
merged_df.drop(columns=list(combined_columns), errors="ignore", inplace=True)
return merged_df, edited_stats_df
# Function to prepare a list of numeric column names and initialize an empty DataFrame with predefined structure
st.cache_resource(show_spinner=False)
def prepare_numeric_columns_and_default_df(merged_df, edited_stats_df):
# Get columns categorized as 'Response Metrics'
columns_response_metrics = edited_stats_df[
edited_stats_df["Category"] == "Response Metrics"
]["Column"].tolist()
# Filter numeric columns, excluding those categorized as 'Response Metrics'
numeric_columns = [
col
for col in merged_df.select_dtypes(include=["number"]).columns
if col not in columns_response_metrics
]
# Define the structure of the empty DataFrame
data = {
"Column 1": pd.Series([], dtype="str"),
"Operator": pd.Series([], dtype="str"),
"Column 2": pd.Series([], dtype="str"),
"Category": pd.Series([], dtype="str"),
}
default_df = pd.DataFrame(data)
return numeric_columns, default_df
# Initialize 'final_df' in session state
if "final_df" not in st.session_state:
st.session_state["final_df"] = pd.DataFrame()
# Initialize 'bin_dict' in session state
if "bin_dict" not in st.session_state:
st.session_state["bin_dict"] = {}
# Initialize 'Panel_1_Panel_2_Selected' in session state
if "Panel_1_Panel_2_Selected" not in st.session_state:
st.session_state["Panel_1_Panel_2_Selected"] = False
# Page Title
st.write("") # Top padding
st.title("Data Import")
#########################################################################################################################################################
# Create a dictionary to hold all DataFrames and collect user input to specify "Panel_2" and "Panel_1" columns for each file
#########################################################################################################################################################
# Read the Excel file, parsing 'Date' column as datetime
main_df = read_API_data()
# Convert all column names to lowercase
main_df.columns = main_df.columns.str.lower().str.strip()
# File uploader
uploaded_files = st.file_uploader(
"Upload additional data",
type=["xlsx"],
accept_multiple_files=True,
on_change=set_Panel_1_Panel_2_Selected_false,
)
# Custom HTML for upload instructions
recommendation_html = f"""
<div style="text-align: justify;">
<strong>Recommendation:</strong> For optimal processing, please ensure that all uploaded datasets including panel, media, internal, and exogenous data adhere to the following guidelines: Each dataset must include a <code>Date</code> column formatted as <code>DD-MM-YYYY</code>, be free of missing values.
</div>
"""
st.markdown(recommendation_html, unsafe_allow_html=True)
# Choose Desired Granularity
st.markdown("#### Choose Desired Granularity")
# Granularity Selection
granularity_selection = st.selectbox(
"Choose Date Granularity",
["Daily", "Weekly", "Monthly"],
label_visibility="collapsed",
on_change=set_Panel_1_Panel_2_Selected_false,
)
granularity_selection = str(granularity_selection).lower()
# Convert files to dataframes
files_dict = files_to_dataframes(uploaded_files)
# Add API Dataframe
if main_df is not None:
files_dict = add_api_dataframe_to_dict(main_df, files_dict)
# Display a warning message if no files have been uploaded and halt further execution
if not files_dict:
st.warning(
"Please upload at least one file to proceed.",
icon="⚠️",
)
st.stop() # Halts further execution until file is uploaded
# Select Panel_1 and Panel_2 columns
st.markdown("#### Select Panel columns")
selections = {}
with st.expander("Select Panel columns", expanded=False):
count = 0 # Initialize counter to manage the visibility of labels and keys
for file_name, file_data in files_dict.items():
# Determine visibility of the label based on the count
if count == 0:
label_visibility = "visible"
else:
label_visibility = "collapsed"
# Extract non-numeric columns
non_numeric_cols = file_data["non_numeric"]
# Prepare Panel_1 and Panel_2 values for dropdown, adding "N/A" as an option
panel1_values = non_numeric_cols + ["N/A"]
panel2_values = non_numeric_cols + ["N/A"]
# Skip if only one option is available
if len(panel1_values) == 1 and len(panel2_values) == 1:
selected_panel1, selected_panel2 = "N/A", "N/A"
# Update the selections for Panel_1 and Panel_2 for the current file
selections[file_name] = {
"Panel_1": selected_panel1,
"Panel_2": selected_panel2,
}
continue
# Create layout columns for File Name, Panel_2, and Panel_1 selections
file_name_col, Panel_1_col, Panel_2_col = st.columns([2, 4, 4])
with file_name_col:
# Display "File Name" label only for the first file
if count == 0:
st.write("File Name")
else:
st.write("")
st.write(file_name) # Display the file name
with Panel_1_col:
# Display a selectbox for Panel_1 values
selected_panel1 = st.selectbox(
"Select Panel Level 1",
panel2_values,
on_change=set_Panel_1_Panel_2_Selected_false,
label_visibility=label_visibility, # Control visibility of the label
key=f"Panel_1_selectbox{count}", # Ensure unique key for each selectbox
)
with Panel_2_col:
# Display a selectbox for Panel_2 values
selected_panel2 = st.selectbox(
"Select Panel Level 2",
panel1_values,
on_change=set_Panel_1_Panel_2_Selected_false,
label_visibility=label_visibility, # Control visibility of the label
key=f"Panel_2_selectbox{count}", # Ensure unique key for each selectbox
)
# Skip processing if the same column is selected for both Panel_1 and Panel_2 due to potential data integrity issues
if selected_panel2 == selected_panel1 and not (
selected_panel2 == "N/A" and selected_panel1 == "N/A"
):
st.warning(
f"File: {file_name} → The same column cannot serve as both Panel_1 and Panel_2. Please adjust your selections.",
)
selected_panel1, selected_panel2 = "N/A", "N/A"
st.stop()
# Update the selections for Panel_1 and Panel_2 for the current file
selections[file_name] = {
"Panel_1": selected_panel1,
"Panel_2": selected_panel2,
}
count += 1 # Increment the counter after processing each file
# Accept Panel_1 and Panel_2 selection
if st.button("Accept and Process", use_container_width=True):
# Normalize all data to a daily granularity. This initial standardization simplifies subsequent conversions to other levels of granularity
with st.spinner("Processing..."):
files_dict = standardize_data_to_daily(files_dict, selections)
# Convert all data to daily level granularity
files_dict = apply_granularity_to_all(
files_dict, granularity_selection, selections
)
# Update the 'files_dict' in the session state
st.session_state["files_dict"] = files_dict
# Set a flag in the session state to indicate that selection has been made
st.session_state["Panel_1_Panel_2_Selected"] = True
#########################################################################################################################################################
# Display unique Panel_1 and Panel_2 values
#########################################################################################################################################################
# Halts further execution until Panel_1 and Panel_2 columns are selected
if "files_dict" in st.session_state and st.session_state["Panel_1_Panel_2_Selected"]:
files_dict = st.session_state["files_dict"]
else:
st.stop()
# Set to store unique values of Panel_1 and Panel_2
with st.spinner("Fetching Panel values..."):
all_panel1_values, all_panel2_values = clean_and_extract_unique_values(
files_dict, selections
)
# List of Panel_1 and Panel_2 columns unique values
list_of_all_panel1_values = list(all_panel1_values)
list_of_all_panel2_values = list(all_panel2_values)
# Format Panel_1 and Panel_2 values for display
formatted_panel1_values = format_values_for_display(list_of_all_panel1_values)
formatted_panel2_values = format_values_for_display(list_of_all_panel2_values)
# Unique Panel_1 and Panel_2 values
st.markdown("#### Unique Panel values")
# Display Panel_1 and Panel_2 values
with st.expander("Unique Panel values"):
st.write("")
st.markdown(
f"""
<style>
.justify-text {{
text-align: justify;
}}
</style>
<div class="justify-text">
<strong>Panel Level 1 Values:</strong> {formatted_panel1_values}<br>
<strong>Panel Level 2 Values:</strong> {formatted_panel2_values}
</div>
""",
unsafe_allow_html=True,
)
# Display total Panel_1 and Panel_2
st.write("")
st.markdown(
f"""
<div style="text-align: justify;">
<strong>Number of Level 1 Panels detected:</strong> {len(list_of_all_panel1_values)}<br>
<strong>Number of Level 2 Panels detected:</strong> {len(list_of_all_panel2_values)}
</div>
""",
unsafe_allow_html=True,
)
st.write("")
#########################################################################################################################################################
# Merge all DataFrames
#########################################################################################################################################################
# Merge all DataFrames selected
main_df = create_main_dataframe(
files_dict, all_panel1_values, all_panel2_values, granularity_selection
)
merged_df = merge_into_main_df(main_df, files_dict, selections)
#########################################################################################################################################################
# Categorize Variables and Impute Missing Values
#########################################################################################################################################################
# Create an editable DataFrame in Streamlit
st.markdown("#### Select Variables Category & Impute Missing Values")
# Prepare missing stats DataFrame for editing
missing_stats_df = prepare_missing_stats_df(merged_df)
edited_stats_df = st.data_editor(
missing_stats_df,
column_config={
"Impute Method": st.column_config.SelectboxColumn(
options=[
"Drop Column",
"Fill with Mean",
"Fill with Median",
"Fill with 0",
],
required=True,
default="Fill with 0",
),
"Category": st.column_config.SelectboxColumn(
options=[
"Media",
"Exogenous",
"Internal",
"Response Metrics",
],
required=True,
default="Media",
),
},
disabled=["Column", "Missing Values", "Missing Percentage"],
hide_index=True,
use_container_width=True,
)
# Apply changes based on edited DataFrame
for i, row in edited_stats_df.iterrows():
column = row["Column"]
if row["Impute Method"] == "Drop Column":
merged_df.drop(columns=[column], inplace=True)
elif row["Impute Method"] == "Fill with Mean":
merged_df[column].fillna(merged_df[column].mean(), inplace=True)
elif row["Impute Method"] == "Fill with Median":
merged_df[column].fillna(merged_df[column].median(), inplace=True)
elif row["Impute Method"] == "Fill with 0":
merged_df[column].fillna(0, inplace=True)
#########################################################################################################################################################
# Group columns
#########################################################################################################################################################
# Display Group columns header
st.markdown("#### Feature engineering")
# Prepare the numeric columns and an empty DataFrame for user input
numeric_columns, default_df = prepare_numeric_columns_and_default_df(
merged_df, edited_stats_df
)
# Display editable Dataframe
edited_df = st.data_editor(
default_df,
column_config={
"Column 1": st.column_config.SelectboxColumn(
options=numeric_columns,
required=True,
default=numeric_columns[0],
width=400,
),
"Operator": st.column_config.SelectboxColumn(
options=["+", "-", "*", "/"],
required=True,
default="+",
width=100,
),
"Column 2": st.column_config.SelectboxColumn(
options=numeric_columns,
required=True,
default=numeric_columns[0],
width=400,
),
"Category": st.column_config.SelectboxColumn(
options=[
"Media",
"Exogenous",
"Internal",
"Response Metrics",
],
required=True,
default="Media",
width=200,
),
},
num_rows="dynamic",
)
# Process the DataFrame based on user inputs and operations specified in edited_df
final_df, edited_stats_df = process_dataframes(merged_df, edited_df, edited_stats_df)
#########################################################################################################################################################
# Display the Final DataFrame and variables
#########################################################################################################################################################
# Display the Final DataFrame and variables
st.markdown("#### Final DataFrame")
st.dataframe(final_df, hide_index=True)
# Initialize an empty dictionary to hold categories and their variables
category_dict = {}
# Iterate over each row in the edited DataFrame to populate the dictionary
for i, row in edited_stats_df.iterrows():
column = row["Column"]
category = row["Category"] # The category chosen by the user for this variable
# Check if the category already exists in the dictionary
if category not in category_dict:
# If not, initialize it with the current column as its first element
category_dict[category] = [column]
else:
# If it exists, append the current column to the list of variables under this category
category_dict[category].append(column)
# Add Date, Panel_1 and Panel_12 in category dictionary
category_dict.update({"Date": ["date"]})
if "Panel_1" in final_df.columns:
category_dict["Panel Level 1"] = ["Panel_1"]
if "Panel_2" in final_df.columns:
category_dict["Panel Level 2"] = ["Panel_2"]
# Display the dictionary
st.markdown("#### Variable Category")
for category, variables in category_dict.items():
# Check if there are multiple variables to handle "and" insertion correctly
if len(variables) > 1:
# Join all but the last variable with ", ", then add " and " before the last variable
variables_str = ", ".join(variables[:-1]) + " and " + variables[-1]
else:
# If there's only one variable, no need for "and"
variables_str = variables[0]
# Display the category and its variables in the desired format
st.markdown(
f"<div style='text-align: justify;'><strong>{category}:</strong> {variables_str}</div>",
unsafe_allow_html=True,
)
# Function to check if Response Metrics is selected
st.write("")
response_metrics_col = category_dict.get("Response Metrics", [])
if len(response_metrics_col) == 0:
st.warning("Please select Response Metrics column", icon="⚠️")
st.stop()
# elif len(response_metrics_col) > 1:
# st.warning("Please select only one Response Metrics column", icon="⚠️")
# st.stop()
# Store final dataframe and bin dictionary into session state
st.session_state["final_df"], st.session_state["bin_dict"] = final_df, category_dict
# Save the DataFrame and dictionary from the session state to the pickle file
if st.button("Accept and Save", use_container_width=True):
save_to_pickle(
"data_import.pkl", st.session_state["final_df"], st.session_state["bin_dict"]
)
st.toast("💾 Saved Successfully!")
|