Spaces:
Sleeping
Sleeping
File size: 11,344 Bytes
e71a85c c80814f e71a85c 21d0d32 e71a85c 6666073 e71a85c 21d0d32 e71a85c c80814f e71a85c 37d9c3a e71a85c 37d9c3a 4ed0876 e71a85c bd8aed8 e71a85c 6666073 848e5d3 c80814f e71a85c c80814f 01ea85b aa4679f 3e65c2d aa4679f e71a85c aa4679f 01ea85b 848e5d3 e71a85c aa4679f 2cee98f e71a85c aa4679f e71a85c c80814f e71a85c 26ceaf8 e71a85c c80814f e71a85c 0fa03a6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 |
import gradio as gr
import requests
import random
import os
import zipfile
import librosa
import time
from infer_rvc_python import BaseLoader
from pydub import AudioSegment
from tts_voice import tts_order_voice
import edge_tts
import tempfile
from audio_separator.separator import Separator
from animalesepy import *
import model_handler
import psutil
import cpuinfo
import re
import numpy as np
import wave
language_dict = tts_order_voice
from blaise import *
try:
import spaces
spaces_status = True
except ImportError:
spaces_status = False
separator = Separator()
converter = BaseLoader(only_cpu=True, hubert_path=None, rmvpe_path=None)
global pth_file
global index_file
pth_file = "model.pth"
index_file = "model.index"
#CONFIGS
TEMP_DIR = "temp"
MODEL_PREFIX = "model"
PITCH_ALGO_OPT = [
"pm",
"harvest",
"crepe",
"rmvpe",
"rmvpe+",
]
MODELS = [
{"model": "model.pth", "index": "model.index", "model_name": "Test Model"},
]
os.makedirs(TEMP_DIR, exist_ok=True)
def unzip_file(file):
filename = os.path.basename(file).split(".")[0]
with zipfile.ZipFile(file, 'r') as zip_ref:
zip_ref.extractall(os.path.join(TEMP_DIR, filename))
return True
def progress_bar(total, current):
return "[" + "=" * int(current / total * 20) + ">" + " " * (20 - int(current / total * 20)) + "] " + str(int(current / total * 100)) + "%"
def contains_bad_word(text, bad_words):
text_lower = text.lower()
for word in bad_words:
if word.lower() in text_lower:
return True
return False
bad_words = ['puttana', 'whore', 'badword3', 'badword4']
class BadWordError(Exception):
def __init__(self, msg):
super().__init__(msg)
self.word = word
def download_from_url(url, name=None):
if name is None:
raise ValueError("The model name must be provided")
if "/blob/" in url:
url = url.replace("/blob/", "/resolve/")
if "huggingface" not in url:
return ["The URL must be from huggingface", "Failed", "Failed"]
if contains_bad_word(url, bad_words):
return BadWordError("The file url has a bad word.")
if contains_bad_word(name, bad_words):
return BadWordError("The file name has a bad word.")
filename = os.path.join(TEMP_DIR, MODEL_PREFIX + str(random.randint(1, 1000)) + ".zip")
response = requests.get(url)
total = int(response.headers.get('content-length', 0))
if total > 500000000:
return ["The file is too large. You can only download files up to 500 MB in size.", "Failed", "Failed"]
current = 0
with open(filename, "wb") as f:
for data in response.iter_content(chunk_size=4096):
f.write(data)
current += len(data)
print(progress_bar(total, current), end="\r") #
try:
unzip_file(filename)
except Exception as e:
return ["Failed to unzip the file", "Failed", "Failed"]
unzipped_dir = os.path.join(TEMP_DIR, os.path.basename(filename).split(".")[0])
pth_files = []
index_files = []
for root, dirs, files in os.walk(unzipped_dir):
for file in files:
if file.endswith(".pth"):
pth_files.append(os.path.join(root, file))
elif file.endswith(".index"):
index_files.append(os.path.join(root, file))
print(pth_files, index_files)
global pth_file
global index_file
pth_file = pth_files[0]
index_file = index_files[0]
print(pth_file)
print(index_file)
if name == "":
name = pth_file.split(".")[0]
MODELS.append({"model": pth_file, "index": index_file, "model_name": name})
return ["Downloaded as " + name, pth_files[0], index_files[0]]
def inference(audio, model_name):
output_data = inf_handler(audio, model_name)
vocals = output_data[0]
inst = output_data[1]
return vocals, inst
if spaces_status:
@spaces.GPU()
def convert_now(audio_files, random_tag, converter):
return converter(
audio_files,
random_tag,
overwrite=False,
parallel_workers=8
)
else:
def convert_now(audio_files, random_tag, converter):
return converter(
audio_files,
random_tag,
overwrite=False,
parallel_workers=8
)
def run(
model,
audio_files,
pitch_alg,
pitch_lvl,
index_inf,
r_m_f,
e_r,
c_b_p,
):
if not audio_files:
raise ValueError("The audio pls")
if isinstance(audio_files, str):
audio_files = [audio_files]
try:
duration_base = librosa.get_duration(filename=audio_files[0])
print("Duration:", duration_base)
except Exception as e:
print(e)
random_tag = "USER_"+str(random.randint(10000000, 99999999))
file_m = model
print("File model:", file_m)
# get from MODELS
for model in MODELS:
if model["model_name"] == file_m:
print(model)
file_m = model["model"]
file_index = model["index"]
break
if not file_m.endswith(".pth"):
raise ValueError("The model file must be a .pth file")
print("Random tag:", random_tag)
print("File model:", file_m)
print("Pitch algorithm:", pitch_alg)
print("Pitch level:", pitch_lvl)
print("File index:", file_index)
print("Index influence:", index_inf)
print("Respiration median filtering:", r_m_f)
print("Envelope ratio:", e_r)
converter.apply_conf(
tag=random_tag,
file_model=file_m,
pitch_algo=pitch_alg,
pitch_lvl=pitch_lvl,
file_index=file_index,
index_influence=index_inf,
respiration_median_filtering=r_m_f,
envelope_ratio=e_r,
consonant_breath_protection=c_b_p,
resample_sr=44100 if audio_files[0].endswith('.mp3') else 0,
)
time.sleep(0.1)
result = convert_now(audio_files, random_tag, converter)
print("Result:", result)
return result[0]
def upload_model(index_file, pth_file, model_name):
pth_file = pth_file.name
index_file = index_file.name
MODELS.append({"model": pth_file, "index": index_file, "model_name": model_name})
return "Uploaded!"
with gr.Blocks(theme=secret, title="Animalese RVC 🔶") as app:
gr.Markdown("## Animalese RVC 🔶")
gr.Markdown("**this project is forked of Ilaria RVC!**")
with gr.Tab("Inference"):
text_input = gr.Textbox(label="Input Text", placeholder="Enter text to convert to Animalese")
shorten_input = gr.Checkbox(label="Shorten Words")
pitch_input = gr.Slider(minimum=0.2, maximum=2.0, step=0.1, value=1.0, label="Pitch", visible=False)
sound_gui = gr.Audio(type="filepath",autoplay=False,visible=True)
def update():
print(MODELS)
return gr.Dropdown(label="Model",choices=[model["model_name"] for model in MODELS],visible=True,interactive=True, value=MODELS[0]["model_name"],)
with gr.Row():
models_dropdown = gr.Dropdown(label="Model",choices=[model["model_name"] for model in MODELS],visible=True,interactive=True, value=MODELS[0]["model_name"],)
pitch_lvl_conf = gr.Slider(label="Pitch level (lower -> 'male' while higher -> 'female')",minimum=-12,maximum=12,step=1,value=0,visible=True,interactive=True,)
with gr.Accordion("Settings", open=False, visible=False):
pitch_algo_conf = gr.Dropdown(PITCH_ALGO_OPT,value=PITCH_ALGO_OPT[4],label="Pitch algorithm",visible=True,interactive=True,)
index_inf_conf = gr.Slider(minimum=0,maximum=1,label="Index influence -> How much accent is applied",value=0.75,)
respiration_filter_conf = gr.Slider(minimum=0,maximum=7,label="Respiration median filtering",value=3,step=1,interactive=True,)
envelope_ratio_conf = gr.Slider(minimum=0,maximum=1,label="Envelope ratio",value=0.25,interactive=True,)
consonant_protec_conf = gr.Slider(minimum=0,maximum=0.5,label="Consonant breath protection",value=0.5,interactive=True,)
with gr.Group():
refresh_button = gr.Button("1. Refresh Models")
preview_button = gr.Button("2. Preview!")
button_conf = gr.Button("3. Convert",variant="primary",)
output_conf = gr.Audio(type="filepath",label="Output",)
refresh_button.click(update, outputs=[models_dropdown])
preview_button.click(fn=lambda text, shorten, pitch: preview_audio(generate_audio(text, shorten, pitch)),
inputs=[text_input, shorten_input, pitch_input],
outputs=sound_gui)
button_conf.click(lambda :None, None, output_conf)
button_conf.click(
run,
inputs=[
models_dropdown,
sound_gui,
pitch_algo_conf,
pitch_lvl_conf,
index_inf_conf,
respiration_filter_conf,
envelope_ratio_conf,
consonant_protec_conf,
],
outputs=[output_conf],
)
with gr.Tab("Model Loader (Download and Upload)"):
with gr.Accordion("Model Downloader", open=False):
gr.Markdown(
"Download the model from the following URL and upload it here. (Huggingface RVC model)"
)
model = gr.Textbox(lines=1, label="Model URL")
name = gr.Textbox(lines=1, label="Model Name", placeholder="Model Name")
download_button = gr.Button("Download Model")
status = gr.Textbox(lines=1, label="Status", placeholder="Waiting....", interactive=False)
model_pth = gr.Textbox(lines=1, label="Model pth file", placeholder="Waiting....", interactive=False)
index_pth = gr.Textbox(lines=1, label="Index pth file", placeholder="Waiting....", interactive=False)
download_button.click(download_from_url, [model, name], outputs=[status, model_pth, index_pth])
with gr.Accordion("Upload A Model", open=False):
index_file_upload = gr.File(label="Index File (.index)")
pth_file_upload = gr.File(label="Model File (.pth)")
model_name = gr.Textbox(label="Model Name", placeholder="Model Name")
upload_button = gr.Button("Upload Model")
upload_status = gr.Textbox(lines=1, label="Status", placeholder="Waiting....", interactive=False)
upload_button.click(upload_model, [index_file_upload, pth_file_upload, model_name], upload_status)
with gr.Tab("Credits"):
gr.Markdown(
"""
Animalese RVC made by [Blane187](https://huggingface.co/Blane187)
Ilaria RVC made by [Ilaria](https://huggingface.co/TheStinger) suport her on [ko-fi](https://ko-fi.com/ilariaowo)
The modules made by [r3gm](https://huggingface.co/r3gm)
made with ❤️ by [mikus](https://github.com/cappuch) - made the ui!
"""
)
with gr.Tab(("")):
gr.Markdown('''
![ilaria](https://i.ytimg.com/vi/5PWqt2Wg-us/maxresdefault.jpg)
''')
app.queue(api_open=False).launch(show_api=False)
|