File size: 5,270 Bytes
00fb423
 
 
2628df2
 
60b3d63
2628df2
 
 
 
 
00fb423
2628df2
00fb423
 
2628df2
00fb423
 
 
 
 
 
 
 
5c21323
 
 
 
00fb423
5c21323
00fb423
5c21323
 
 
 
 
 
 
 
 
 
 
 
 
 
00fb423
5c21323
00fb423
 
5c21323
4ff535a
3f53a03
 
 
 
 
5c21323
 
4ff535a
5c21323
 
 
2fefaad
 
 
 
 
 
 
 
 
 
 
 
 
5c21323
 
00fb423
60b3d63
 
 
5c21323
60b3d63
5c21323
 
 
 
 
00fb423
5c21323
 
 
00fb423
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5c21323
00fb423
a3c6694
 
 
 
 
5c21323
 
00fb423
 
 
5c21323
00fb423
 
 
 
 
 
5c21323
 
00fb423
 
5c21323
 
00fb423
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import os
import re
import time
import sys
import subprocess
import scipy.io.wavfile as wavfile
import gradio as gr
from TTS.api import TTS
from TTS.tts.configs.xtts_config import XttsConfig
from TTS.tts.models.xtts import Xtts
from TTS.utils.generic_utils import get_user_data_dir
from huggingface_hub import hf_hub_download

# Configuración inicial
os.environ["COQUI_TOS_AGREED"] = "1"

def check_and_install(package):
    try:
        __import__(package)
    except ImportError:
        print(f"{package} no está instalado. Instalando...")
        subprocess.check_call([sys.executable, "-m", "pip", "install", package])

print("Descargando y configurando el modelo...")
repo_id = "Blakus/Pedro_Lab_XTTS"
local_dir = os.path.join(get_user_data_dir("tts"), "tts_models--multilingual--multi-dataset--xtts_v2")
os.makedirs(local_dir, exist_ok=True)
files_to_download = ["config.json", "model.pth", "vocab.json"]

for file_name in files_to_download:
    print(f"Descargando {file_name} de {repo_id}")
    hf_hub_download(repo_id=repo_id, filename=file_name, local_dir=local_dir)

config_path = os.path.join(local_dir, "config.json")
checkpoint_path = os.path.join(local_dir, "model.pth")
vocab_path = os.path.join(local_dir, "vocab.json")

config = XttsConfig()
config.load_json(config_path)

model = Xtts.init_from_config(config)
model.load_checkpoint(config, checkpoint_path=checkpoint_path, vocab_path=vocab_path, eval=True, use_deepspeed=False)

print("Modelo cargado en CPU")

def predict(prompt, language, reference_audio):
    try:
        if len(prompt) < 2 or len(prompt) > 600:
            return None, "El texto debe tener entre 2 y 600 caracteres."

        # Obtener los parámetros de la configuración JSON
        temperature = config.model_args.get("temperature", 0.85)
        length_penalty = config.model_args.get("length_penalty", 1.0)
        repetition_penalty = config.model_args.get("repetition_penalty", 2.0)
        top_k = config.model_args.get("top_k", 50)
        top_p = config.model_args.get("top_p", 0.85)

        gpt_cond_latent, speaker_embedding = model.get_conditioning_latents(
            audio_path=reference_audio
        )

        start_time = time.time()

        out = model.inference(
            prompt,
            language,
            gpt_cond_latent,
            speaker_embedding,
            temperature=temperature,
            length_penalty=length_penalty,
            repetition_penalty=repetition_penalty,
            top_k=top_k,
            top_p=top_p
        )

        inference_time = time.time() - start_time
        
        output_path = "output.wav"
        # Guardar el audio directamente desde el output del modelo
        import scipy.io.wavfile as wavfile
        wavfile.write(output_path, config.audio["output_sample_rate"], out["wav"])

        audio_length = len(out["wav"]) / config.audio["output_sample_rate"]  # duración del audio en segundos
        real_time_factor = inference_time / audio_length

        metrics_text = f"Tiempo de generación: {inference_time:.2f} segundos\n"
        metrics_text += f"Factor de tiempo real: {real_time_factor:.2f}"

        return output_path, metrics_text

    except Exception as e:
        print(f"Error detallado: {str(e)}")
        return None, f"Error: {str(e)}"

# Configuración de la interfaz de Gradio
supported_languages = ["es", "en"]
reference_audios = [
    "serio.wav",
    "neutral.wav",
    "alegre.wav",
]

theme = gr.themes.Soft(
    primary_hue="blue",
    secondary_hue="gray",
).set(
    body_background_fill='*neutral_100',
    body_background_fill_dark='*neutral_900',
)

description = """
# Sintetizador de voz de Pedro Labattaglia 🎙️

Sintetizador de voz con la voz del locutor argentino Pedro Labattaglia. 

## Cómo usarlo:
- Elija el idioma (Español o Inglés)
- Elija un audio de referencia de la lista 
- Escriba el texto que desea sintetizar
- Presione generar voz
"""

# Interfaz de Gradio
with gr.Blocks(theme=theme) as demo:
    gr.Markdown(description)

    with gr.Row():
        gr.Image("https://i1.sndcdn.com/artworks-000237574740-gwz61j-t500x500.jpg", 
                 label="", 
                 show_label=False,
                 container=False,  # Esto permite que la imagen se ajuste al contenedor
                 height="auto")    # Altura automática para mantener la relación de aspecto

    with gr.Row():
        with gr.Column(scale=2):
            language_selector = gr.Dropdown(label="Idioma", choices=supported_languages)
            reference_audio = gr.Dropdown(label="Audio de referencia", choices=reference_audios)
            input_text = gr.Textbox(label="Texto a sintetizar", placeholder="Escribe aquí el texto que quieres convertir a voz...")
            generate_button = gr.Button("Generar voz", variant="primary")

        with gr.Column(scale=1):
            generated_audio = gr.Audio(label="Audio generado", interactive=False)
            metrics_output = gr.Textbox(label="Métricas", value="Tiempo de generación: -- segundos\nFactor de tiempo real: --")

    generate_button.click(
        predict,
        inputs=[input_text, language_selector, reference_audio],
        outputs=[generated_audio, metrics_output]
    )

if __name__ == "__main__":
    demo.launch()