File size: 3,935 Bytes
046f8fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
import logging

import torch
from tqdm.auto import tqdm
from transformers import AutoModelForSeq2SeqLM, AutoTokenizer


def load_model_and_tokenizer(model_name):
    """
    load_model_and_tokenizer - a function that loads a model and tokenizer from huggingface
    Args:
        model_name (str): the name of the model to load
    Returns:
        AutoModelForSeq2SeqLM: the model
        AutoTokenizer: the tokenizer
    """

    model = AutoModelForSeq2SeqLM.from_pretrained(
        model_name,
        # low_cpu_mem_usage=True,
        # use_cache=False,
    )
    tokenizer = AutoTokenizer.from_pretrained(model_name)
    model = model.to("cuda") if torch.cuda.is_available() else model

    logging.info(f"Loaded model {model_name}")
    return model, tokenizer


def summarize_and_score(ids, mask, model, tokenizer, **kwargs):
    """
    summarize_and_score - given a batch of ids and a mask, return a summary and a score for the summary
    Args:
        ids (): the batch of ids
        mask (): the attention mask for the batch
        model   (): the model to use for summarization
        tokenizer (): the tokenizer to use for summarization
    Returns:
        str: the summary of the batch
    """

    ids = ids[None, :]
    mask = mask[None, :]

    input_ids = ids.to("cuda") if torch.cuda.is_available() else ids
    attention_mask = mask.to("cuda") if torch.cuda.is_available() else mask

    global_attention_mask = torch.zeros_like(attention_mask)
    # put global attention on <s> token
    global_attention_mask[:, 0] = 1

    summary_pred_ids = model.generate(
        input_ids,
        attention_mask=attention_mask,
        global_attention_mask=global_attention_mask,
        output_scores=True,
        return_dict_in_generate=True,
        **kwargs,
    )
    summary = tokenizer.batch_decode(
        summary_pred_ids.sequences,
        skip_special_tokens=True,
        remove_invalid_values=True,
    )
    score = round(summary_pred_ids.sequences_scores.cpu().numpy()[0], 4)

    return summary, score


def summarize_via_tokenbatches(
    input_text: str,
    model,
    tokenizer,
    batch_length=2048,
    batch_stride=16,
    **kwargs,
):
    """
    summarize_via_tokenbatches - a function that takes a string and returns a summary
    Args:
        input_text (str): the text to summarize
        model (): the model to use for summarization
        tokenizer (): the tokenizer to use for summarization
        batch_length (int, optional): the length of each batch. Defaults to 2048.
        batch_stride (int, optional): the stride of each batch. Defaults to 16. The stride is the number of tokens that overlap between batches.
    Returns:
        str: the summary
    """
    # log all input parameters
    if batch_length < 512:
        batch_length = 512
        print("WARNING: batch_length was set to 512")
    print(
        f"input parameters: {kwargs}, batch_length={batch_length}, batch_stride={batch_stride}"
    )
    encoded_input = tokenizer(
        input_text,
        padding="max_length",
        truncation=True,
        max_length=batch_length,
        stride=batch_stride,
        return_overflowing_tokens=True,
        add_special_tokens=False,
        return_tensors="pt",
    )

    in_id_arr, att_arr = encoded_input.input_ids, encoded_input.attention_mask
    gen_summaries = []

    pbar = tqdm(total=len(in_id_arr))

    for _id, _mask in zip(in_id_arr, att_arr):

        result, score = summarize_and_score(
            ids=_id,
            mask=_mask,
            model=model,
            tokenizer=tokenizer,
            **kwargs,
        )
        score = round(float(score), 4)
        _sum = {
            "input_tokens": _id,
            "summary": result,
            "summary_score": score,
        }
        gen_summaries.append(_sum)
        print(f"\t{result[0]}\nScore:\t{score}")
        pbar.update()

    pbar.close()

    return gen_summaries