Spaces:
Paused
Paused
File size: 12,582 Bytes
fe24641 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 |
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
import json
import random
from typing import Dict, Any, List
class QwenTextGenerator:
"""Text generation using Qwen2.5-0.5B-Instruct for monster traits and dialogue"""
def __init__(self, device: str = "cuda"):
self.device = device if torch.cuda.is_available() else "cpu"
self.model = None
self.tokenizer = None
self.model_id = "Qwen/Qwen2.5-0.5B-Instruct"
# Generation parameters
self.max_new_tokens = 150
self.temperature = 0.8
self.top_p = 0.9
# Monster trait templates
self.trait_categories = {
'elements': ['fire', 'water', 'earth', 'wind', 'electric', 'ice', 'nature', 'dark', 'light', 'neutral'],
'personalities': ['brave', 'timid', 'aggressive', 'gentle', 'playful', 'serious', 'loyal', 'independent', 'curious', 'protective'],
'body_types': ['bipedal', 'quadruped', 'serpentine', 'avian', 'aquatic', 'insectoid', 'humanoid', 'amorphous'],
'sizes': ['tiny', 'small', 'medium', 'large', 'giant'],
'special_features': ['wings', 'horns', 'tail', 'spikes', 'fur', 'scales', 'armor', 'crystals', 'flames', 'aura']
}
def load_model(self):
"""Lazy load the text generation model"""
if self.model is None:
try:
# Load tokenizer
self.tokenizer = AutoTokenizer.from_pretrained(self.model_id)
# Model configuration
torch_dtype = torch.float16 if self.device == "cuda" else torch.float32
self.model = AutoModelForCausalLM.from_pretrained(
self.model_id,
torch_dtype=torch_dtype,
device_map="auto" if self.device == "cuda" else None,
low_cpu_mem_usage=True
)
if self.device == "cpu":
self.model.to(self.device)
except Exception as e:
print(f"Failed to load text generation model: {e}")
raise
def generate_traits(self, description: str) -> Dict[str, Any]:
"""Generate monster traits from description"""
try:
self.load_model()
# Create prompt for trait generation
prompt = self._create_trait_prompt(description)
# Generate response
inputs = self.tokenizer(prompt, return_tensors="pt").to(self.device)
with torch.no_grad():
outputs = self.model.generate(
**inputs,
max_new_tokens=self.max_new_tokens,
temperature=self.temperature,
top_p=self.top_p,
do_sample=True,
pad_token_id=self.tokenizer.eos_token_id
)
response = self.tokenizer.decode(outputs[0][inputs['input_ids'].shape[1]:], skip_special_tokens=True)
# Parse traits from response
traits = self._parse_traits(response, description)
return traits
except Exception as e:
print(f"Error generating traits: {e}")
return self._generate_fallback_traits(description)
def generate_dialogue(self, traits: Dict[str, Any]) -> str:
"""Generate monster dialogue (emoji + numbers)"""
try:
# Create emoji dialogue based on personality and mood
personality = traits.get('personality', 'neutral')
# Emoji mapping for personalities
emoji_map = {
'brave': ['๐ช', '๐ฅ', 'โ๏ธ', '๐ก๏ธ'],
'timid': ['๐ฐ', '๐ฅบ', '๐ฆ', 'โ'],
'aggressive': ['๐ค', '๐ข', '๐ฅ', 'โก'],
'gentle': ['๐', '๐ธ', 'โจ', '๐'],
'playful': ['๐', '๐ฎ', '๐ฏ', '๐ช'],
'serious': ['๐ค', '๐', 'โก', '๐ฏ'],
'loyal': ['๐', '๐ค', '๐ก๏ธ', 'โญ'],
'independent': ['๐', '๐', '๐ฎ', '๐ซ'],
'curious': ['๐', 'โ', '๐ก', '๐'],
'protective': ['๐ก๏ธ', '๐ช', '๐ฐ', 'โ๏ธ']
}
# Get appropriate emojis
emojis = emoji_map.get(personality, ['๐ค', '๐', 'โจ'])
selected_emojis = random.sample(emojis, min(2, len(emojis)))
# Generate status numbers (representing monster's current state)
hp_percent = random.randint(70, 100)
happiness = random.randint(60, 95)
energy = random.randint(50, 90)
# Create dialogue
dialogue = f"{selected_emojis[0]}{selected_emojis[1] if len(selected_emojis) > 1 else '๐'}"
dialogue += f"{hp_percent}๏ธโฃ{happiness}๏ธโฃ"
return dialogue
except Exception as e:
print(f"Error generating dialogue: {e}")
return "๐ค๐9๏ธโฃ0๏ธโฃ"
def _create_trait_prompt(self, description: str) -> str:
"""Create prompt for trait generation"""
prompt = f"""<|im_start|>system
You are a creative game designer creating unique digital monsters. Generate detailed traits for a monster based on the description.
<|im_end|>
<|im_start|>user
Create traits for this monster: {description}
Include: name, species, element, personality, appearance details, and special abilities.
<|im_end|>
<|im_start|>assistant
"""
return prompt
def _parse_traits(self, response: str, original_description: str) -> Dict[str, Any]:
"""Parse traits from model response"""
traits = {
'description': original_description,
'raw_response': response
}
# Extract name
if "name:" in response.lower():
name_start = response.lower().find("name:") + 5
name_end = response.find("\n", name_start)
if name_end == -1:
name_end = len(response)
traits['name'] = response[name_start:name_end].strip()
else:
traits['name'] = self._generate_name()
# Extract or assign element
element_found = False
for element in self.trait_categories['elements']:
if element in response.lower():
traits['element'] = element
element_found = True
break
if not element_found:
traits['element'] = random.choice(self.trait_categories['elements'])
# Extract or assign personality
personality_found = False
for personality in self.trait_categories['personalities']:
if personality in response.lower():
traits['personality'] = personality
personality_found = True
break
if not personality_found:
traits['personality'] = random.choice(self.trait_categories['personalities'])
# Extract appearance
traits['appearance'] = self._extract_appearance(response)
# Extract abilities
traits['abilities'] = self._extract_abilities(response, traits['element'])
# Add color scheme based on element
traits['color_scheme'] = self._get_color_scheme(traits['element'])
return traits
def _generate_name(self) -> str:
"""Generate a random monster name"""
prefixes = ['Pyro', 'Aqua', 'Terra', 'Aero', 'Volt', 'Cryo', 'Flora', 'Shadow', 'Lumi', 'Neo']
suffixes = ['mon', 'beast', 'guard', 'wing', 'claw', 'fang', 'horn', 'tail', 'byte', 'spark']
return random.choice(prefixes) + random.choice(suffixes)
def _extract_appearance(self, response: str) -> str:
"""Extract appearance description"""
appearance_keywords = ['appearance', 'looks like', 'resembles', 'body', 'color', 'size']
for keyword in appearance_keywords:
if keyword in response.lower():
start = response.lower().find(keyword)
end = response.find('.', start)
if end == -1:
end = response.find('\n', start)
if end == -1:
end = len(response)
return response[start:end].strip()
# Fallback appearance
body_type = random.choice(self.trait_categories['body_types'])
size = random.choice(self.trait_categories['sizes'])
feature = random.choice(self.trait_categories['special_features'])
return f"A {size} {body_type} creature with {feature}"
def _extract_abilities(self, response: str, element: str) -> List[str]:
"""Extract or generate abilities"""
abilities = []
ability_keywords = ['ability', 'power', 'skill', 'can', 'capable']
for keyword in ability_keywords:
if keyword in response.lower():
# Try to extract abilities from response
start = response.lower().find(keyword)
end = response.find('.', start)
if end > start:
ability_text = response[start:end]
abilities.append(ability_text.strip())
# If no abilities found, generate based on element
if not abilities:
element_abilities = {
'fire': ['Flame Burst', 'Heat Wave', 'Ember Shield'],
'water': ['Aqua Jet', 'Bubble Shield', 'Tidal Wave'],
'earth': ['Rock Throw', 'Earthquake', 'Stone Armor'],
'wind': ['Gust', 'Tornado', 'Wind Shield'],
'electric': ['Thunder Shock', 'Static Field', 'Lightning Speed'],
'ice': ['Ice Beam', 'Frost Armor', 'Blizzard'],
'nature': ['Vine Whip', 'Healing Bloom', 'Nature\'s Guard'],
'dark': ['Shadow Strike', 'Dark Pulse', 'Void Shield'],
'light': ['Light Beam', 'Healing Light', 'Radiant Shield'],
'neutral': ['Tackle', 'Defense Curl', 'Focus']
}
abilities = random.sample(
element_abilities.get(element, element_abilities['neutral']),
2
)
return abilities
def _get_color_scheme(self, element: str) -> str:
"""Get color scheme based on element"""
color_schemes = {
'fire': 'red and orange with yellow accents',
'water': 'blue and cyan with white highlights',
'earth': 'brown and green with stone textures',
'wind': 'white and light blue with swirling patterns',
'electric': 'yellow and blue with sparking effects',
'ice': 'light blue and white with crystalline features',
'nature': 'green and brown with leaf patterns',
'dark': 'black and purple with shadow effects',
'light': 'white and gold with glowing aura',
'neutral': 'gray and silver with balanced tones'
}
return color_schemes.get(element, 'varied colors with unique patterns')
def _generate_fallback_traits(self, description: str) -> Dict[str, Any]:
"""Generate fallback traits if model fails"""
element = random.choice(self.trait_categories['elements'])
personality = random.choice(self.trait_categories['personalities'])
return {
'name': self._generate_name(),
'species': 'Digital Monster',
'element': element,
'personality': personality,
'appearance': f"A unique {random.choice(self.trait_categories['sizes'])} digital creature",
'color_scheme': self._get_color_scheme(element),
'abilities': self._extract_abilities("", element),
'description': description
}
def to(self, device: str):
"""Move model to specified device"""
self.device = device
if self.model:
self.model.to(device)
def __del__(self):
"""Cleanup when object is destroyed"""
if self.model:
del self.model
if self.tokenizer:
del self.tokenizer
torch.cuda.empty_cache() |