File size: 16,271 Bytes
fe24641
 
 
 
 
 
 
 
 
 
e4aa154
 
fe24641
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e4aa154
 
fe24641
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
489a29e
 
 
 
 
 
 
 
 
 
 
 
fe24641
 
 
 
 
 
 
 
e8293cd
fe24641
 
 
 
 
 
 
e8293cd
 
fe24641
 
 
e8293cd
 
fe24641
 
 
 
e8293cd
fe24641
 
 
 
e8293cd
fe24641
 
 
e8293cd
fe24641
 
e8293cd
fe24641
 
 
 
 
e8293cd
fe24641
 
 
 
 
e8293cd
fe24641
 
 
 
 
e8293cd
fe24641
 
 
e8293cd
fe24641
 
e8293cd
fe24641
 
 
 
 
 
e8293cd
fe24641
 
 
 
 
 
 
 
 
 
 
e8293cd
fe24641
 
 
e8293cd
fe24641
 
e8293cd
fe24641
 
 
 
 
 
 
e8293cd
fe24641
 
e4aa154
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fe24641
e8293cd
fe24641
e8293cd
fe24641
 
e8293cd
fe24641
 
 
 
 
 
 
e8293cd
fe24641
 
 
 
e8293cd
fe24641
e8293cd
fe24641
e8293cd
fe24641
 
 
 
 
 
 
 
 
 
 
e8293cd
fe24641
 
 
 
 
 
 
 
 
 
 
 
 
e8293cd
fe24641
e8293cd
16aa645
 
 
 
 
 
 
 
 
 
 
fe24641
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8293cd
fe24641
 
 
 
 
e8293cd
 
fe24641
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e8293cd
fe24641
 
 
e8293cd
fe24641
 
 
 
e8293cd
fe24641
 
 
e8293cd
fe24641
 
 
 
 
 
e8293cd
fe24641
 
 
e8293cd
fe24641
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
import spaces
import torch
import gc
import os
from typing import Optional, List, Dict, Any
from datetime import datetime
from pathlib import Path
import numpy as np
from PIL import Image
import tempfile
import threading
import time

# Model imports (to be implemented)
from models.stt_processor import KyutaiSTTProcessor
from models.text_generator import QwenTextGenerator  
from models.image_generator import OmniGenImageGenerator
from models.model_3d_generator import Hunyuan3DGenerator
from models.rigging_processor import UniRigProcessor
from utils.fallbacks import FallbackManager
from utils.caching import ModelCache

class MonsterGenerationPipeline:
    """Main AI pipeline for monster generation"""
    
    def __init__(self, device: str = "cuda"):
        self.device = device if torch.cuda.is_available() else "cpu"
        self.cache = ModelCache()
        self.fallback_manager = FallbackManager()
        self.models = {}
        self.model_loaded = {
            'stt': False,
            'text_gen': False,
            'image_gen': False,
            '3d_gen': False,
            'rigging': False
        }
        
        # Pipeline configuration
        self.config = {
            'max_retries': 3,
            'timeout': 180,
            'enable_caching': True,
            'low_vram_mode': False,  # We have enough VRAM
            'enable_rigging': False  # Disable rigging by default for faster generation
        }
    
    def _cleanup_memory(self):
        """Clear GPU memory"""
        if self.device == "cuda":
            torch.cuda.empty_cache()
            torch.cuda.synchronize()
        gc.collect()
    
    def _lazy_load_model(self, model_type: str):
        """Lazy loading with memory optimization"""
        if self.model_loaded[model_type]:
            return self.models[model_type]
        
        # Clear memory before loading new model
        self._cleanup_memory()
        
        try:
            if model_type == 'stt':
                self.models['stt'] = KyutaiSTTProcessor(device=self.device)
            elif model_type == 'text_gen':
                self.models['text_gen'] = QwenTextGenerator(device=self.device)
            elif model_type == 'image_gen':
                self.models['image_gen'] = OmniGenImageGenerator(device=self.device)
            elif model_type == '3d_gen':
                self.models['3d_gen'] = Hunyuan3DGenerator(device=self.device)
            elif model_type == 'rigging':
                self.models['rigging'] = UniRigProcessor(device=self.device)
            
            self.model_loaded[model_type] = True
            return self.models[model_type]
            
        except Exception as e:
            print(f"Failed to load {model_type}: {e}")
            return None
    
    def _unload_model(self, model_type: str):
        """Unload model to free memory"""
        if model_type in self.models and self.model_loaded[model_type]:
            # Don't try to move models to CPU - just delete them
            # Moving to CPU can fail with meta tensors or when using CPU offloading
            try:
                # If the model has a pipeline attribute, delete it first
                if hasattr(self.models[model_type], 'pipeline'):
                    if self.models[model_type].pipeline is not None:
                        del self.models[model_type].pipeline
                # Delete the model wrapper
                del self.models[model_type]
            except Exception as e:
                print(f"Warning during model unload: {e}")
            
            self.model_loaded[model_type] = False
            self._cleanup_memory()
    
    @spaces.GPU(duration=300)
    def generate_monster(self, 
                        audio_input: Optional[str] = None,
                        text_input: Optional[str] = None,
                        reference_images: Optional[List] = None,
                        user_id: Optional[str] = None) -> Dict[str, Any]:
        """Main monster generation pipeline"""
        
        generation_log = {
            'user_id': user_id,
            'timestamp': datetime.now().isoformat(),
            'stages_completed': [],
            'fallbacks_used': [],
            'success': False,
            'errors': []
        }
        
        try:
            print("πŸš€ Starting monster generation pipeline...")
            
            # Stage 1: Speech to Text (if audio provided)
            description = ""
            if audio_input and os.path.exists(audio_input):
                try:
                    print("🎀 Processing audio input...")
                    stt_model = self._lazy_load_model('stt')
                    if stt_model:
                        description = stt_model.transcribe(audio_input)
                        generation_log['stages_completed'].append('stt')
                        print(f"βœ… STT completed: {description[:100]}...")
                    else:
                        raise Exception("STT model failed to load")
                except Exception as e:
                    print(f"❌ STT failed: {e}")
                    description = text_input or "Create a friendly digital monster"
                    generation_log['fallbacks_used'].append('stt')
                    generation_log['errors'].append(f"STT error: {str(e)}")
                finally:
                    # Unload STT to free memory
                    self._unload_model('stt')
            else:
                description = text_input or "Create a friendly digital monster"
                print(f"πŸ“ Using text input: {description}")
            
            # Stage 2: Generate monster characteristics
            monster_traits = {}
            monster_dialogue = ""
            try:
                print("🧠 Generating monster traits and dialogue...")
                text_gen = self._lazy_load_model('text_gen')
                if text_gen:
                    monster_traits = text_gen.generate_traits(description)
                    monster_dialogue = text_gen.generate_dialogue(monster_traits)
                    generation_log['stages_completed'].append('text_gen')
                    print(f"βœ… Text generation completed: {monster_traits.get('name', 'Unknown')}")
                else:
                    raise Exception("Text generation model failed to load")
            except Exception as e:
                print(f"❌ Text generation failed: {e}")
                monster_traits, monster_dialogue = self.fallback_manager.handle_text_gen_failure(description)
                generation_log['fallbacks_used'].append('text_gen')
                generation_log['errors'].append(f"Text generation error: {str(e)}")
            finally:
                self._unload_model('text_gen')
            
            # Stage 3: Generate monster image
            monster_image = None
            try:
                print("🎨 Generating monster image...")
                image_gen = self._lazy_load_model('image_gen')
                if image_gen:
                    # Create enhanced prompt from traits
                    image_prompt = self._create_image_prompt(description, monster_traits)
                    monster_image = image_gen.generate(
                        prompt=image_prompt,
                        reference_images=reference_images,
                        width=512,
                        height=512
                    )
                    generation_log['stages_completed'].append('image_gen')
                    print("βœ… Image generation completed")
                else:
                    raise Exception("Image generation model failed to load")
            except Exception as e:
                print(f"❌ Image generation failed: {e}")
                monster_image = self.fallback_manager.handle_image_gen_failure(description)
                generation_log['fallbacks_used'].append('image_gen')
                generation_log['errors'].append(f"Image generation error: {str(e)}")
            finally:
                self._unload_model('image_gen')
            
            # Stage 4: Convert to 3D model
            model_3d = None
            model_3d_path = None
            try:
                print("πŸ”² Converting to 3D model...")
                model_3d_gen = self._lazy_load_model('3d_gen')
                if model_3d_gen and monster_image:
                    # Set a timeout for 3D generation (5 minutes)
                    result = None
                    error = None
                    
                    def generate_3d():
                        nonlocal result, error
                        try:
                            result = model_3d_gen.image_to_3d(monster_image)
                        except Exception as e:
                            error = e
                    
                    # Start 3D generation in a separate thread
                    thread = threading.Thread(target=generate_3d)
                    thread.daemon = True
                    thread.start()
                    
                    # Wait for completion with timeout
                    timeout = 300  # 5 minutes
                    thread.join(timeout)
                    
                    if thread.is_alive():
                        print(f"⏰ 3D generation timed out after {timeout} seconds")
                        raise Exception(f"3D generation timeout after {timeout} seconds")
                    
                    if error:
                        raise error
                    
                    if result:
                        model_3d = result
                        # Save 3D model
                        model_3d_path = self._save_3d_model(model_3d, user_id)
                        generation_log['stages_completed'].append('3d_gen')
                        print("βœ… 3D generation completed")
                    else:
                        raise Exception("3D generation returned no result")
                else:
                    raise Exception("3D generation failed - no model or image")
            except Exception as e:
                print(f"❌ 3D generation failed: {e}")
                model_3d = self.fallback_manager.handle_3d_gen_failure(monster_image)
                generation_log['fallbacks_used'].append('3d_gen')
                generation_log['errors'].append(f"3D generation error: {str(e)}")
            finally:
                self._unload_model('3d_gen')
            
            # Stage 5: Add rigging (optional, can be skipped for performance)
            rigged_model = model_3d
            if model_3d and self.config.get('enable_rigging', False):
                try:
                    print("🦴 Adding rigging...")
                    rigging_proc = self._lazy_load_model('rigging')
                    if rigging_proc:
                        rigged_model = rigging_proc.rig_mesh(model_3d)
                        generation_log['stages_completed'].append('rigging')
                        print("βœ… Rigging completed")
                except Exception as e:
                    print(f"❌ Rigging failed: {e}")
                    generation_log['fallbacks_used'].append('rigging')
                    generation_log['errors'].append(f"Rigging error: {str(e)}")
                finally:
                    self._unload_model('rigging')
            
            # Prepare download files
            download_files = self._prepare_download_files(
                rigged_model or model_3d, 
                monster_image,
                user_id
            )
            
            generation_log['success'] = True
            print("πŸŽ‰ Monster generation pipeline completed successfully!")
            
            return {
                'description': description,
                'traits': monster_traits,
                'dialogue': monster_dialogue,
                'image': monster_image,
                'model_3d': model_3d_path,
                'download_files': download_files,
                'generation_log': generation_log,
                'status': 'success'
            }
            
        except Exception as e:
            print(f"πŸ’₯ Pipeline error: {e}")
            generation_log['error'] = str(e)
            generation_log['errors'].append(f"Pipeline error: {str(e)}")
            # return self.fallback_generation(description or "digital monster", generation_log)
            return {
                'description': description,
                'traits': monster_traits,
                'dialogue': monster_dialogue,
                'image': monster_image,
                'model_3d': model_3d_path,
                'download_files': download_files,
                'generation_log': generation_log,
                'status': 'error'
            }
    
    def _create_image_prompt(self, base_description: str, traits: Dict) -> str:
        """Create enhanced prompt for image generation"""
        prompt_parts = [base_description]
        
        if traits:
            if 'appearance' in traits:
                prompt_parts.append(traits['appearance'])
            if 'personality' in traits:
                prompt_parts.append(f"with {traits['personality']} personality")
            if 'color_scheme' in traits:
                prompt_parts.append(f"featuring {traits['color_scheme']} colors")
        
        prompt_parts.extend([
            "digital monster",
            "creature design",
            "game character",
            "high quality",
            "detailed"
        ])
        
        return ", ".join(prompt_parts)
    
    def _save_3d_model(self, model_3d, user_id: Optional[str]) -> Optional[str]:
        """Save 3D model to persistent storage"""
        if not model_3d:
            return None
            
        timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
        user_id_str = user_id or "anonymous"
        filename = f"monster_{user_id_str}_{timestamp}.glb"
        
        # Use HuggingFace Spaces persistent storage
        if os.path.exists("/data"):
            filepath = f"/data/models/{filename}"
        else:
            filepath = f"./data/models/{filename}"
        
        os.makedirs(os.path.dirname(filepath), exist_ok=True)
        
        # Save model (implementation depends on model format)
        # This is a placeholder - actual implementation would depend on model format
        with open(filepath, 'wb') as f:
            if hasattr(model_3d, 'export'):
                model_3d.export(f)
            else:
                # Fallback: save as binary data
                f.write(str(model_3d).encode())
        
        return filepath
    
    def _prepare_download_files(self, model_3d, image, user_id: Optional[str]) -> List[str]:
        """Prepare downloadable files for user"""
        files = []
        timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
        user_id_str = user_id or "anonymous"
        
        # Save image
        if image:
            if isinstance(image, Image.Image):
                image_path = f"/tmp/monster_{user_id_str}_{timestamp}.png"
                image.save(image_path)
                files.append(image_path)
            elif isinstance(image, np.ndarray):
                image_path = f"/tmp/monster_{user_id_str}_{timestamp}.png"
                Image.fromarray(image).save(image_path)
                files.append(image_path)
        
        # Save 3D model in multiple formats if available
        if model_3d:
            # GLB format
            glb_path = f"/tmp/monster_{user_id_str}_{timestamp}.glb"
            files.append(glb_path)
            
            # OBJ format (optional)
            obj_path = f"/tmp/monster_{user_id_str}_{timestamp}.obj"
            files.append(obj_path)
        
        return files
    
    def fallback_generation(self, description: str, generation_log: Dict) -> Dict[str, Any]:
        """Complete fallback generation when pipeline fails"""
        return self.fallback_manager.complete_fallback_generation(description, generation_log)
    
    def cleanup(self):
        """Clean up all loaded models"""
        for model_type in list(self.models.keys()):
            self._unload_model(model_type)
        self._cleanup_memory()