Spaces:
Paused
Paused
File size: 16,271 Bytes
fe24641 e4aa154 fe24641 e4aa154 fe24641 489a29e fe24641 e8293cd fe24641 e8293cd fe24641 e8293cd fe24641 e8293cd fe24641 e8293cd fe24641 e8293cd fe24641 e8293cd fe24641 e8293cd fe24641 e8293cd fe24641 e8293cd fe24641 e8293cd fe24641 e8293cd fe24641 e8293cd fe24641 e8293cd fe24641 e8293cd fe24641 e8293cd fe24641 e8293cd fe24641 e4aa154 fe24641 e8293cd fe24641 e8293cd fe24641 e8293cd fe24641 e8293cd fe24641 e8293cd fe24641 e8293cd fe24641 e8293cd fe24641 e8293cd fe24641 e8293cd fe24641 e8293cd 16aa645 fe24641 e8293cd fe24641 e8293cd fe24641 e8293cd fe24641 e8293cd fe24641 e8293cd fe24641 e8293cd fe24641 e8293cd fe24641 e8293cd fe24641 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 |
import spaces
import torch
import gc
import os
from typing import Optional, List, Dict, Any
from datetime import datetime
from pathlib import Path
import numpy as np
from PIL import Image
import tempfile
import threading
import time
# Model imports (to be implemented)
from models.stt_processor import KyutaiSTTProcessor
from models.text_generator import QwenTextGenerator
from models.image_generator import OmniGenImageGenerator
from models.model_3d_generator import Hunyuan3DGenerator
from models.rigging_processor import UniRigProcessor
from utils.fallbacks import FallbackManager
from utils.caching import ModelCache
class MonsterGenerationPipeline:
"""Main AI pipeline for monster generation"""
def __init__(self, device: str = "cuda"):
self.device = device if torch.cuda.is_available() else "cpu"
self.cache = ModelCache()
self.fallback_manager = FallbackManager()
self.models = {}
self.model_loaded = {
'stt': False,
'text_gen': False,
'image_gen': False,
'3d_gen': False,
'rigging': False
}
# Pipeline configuration
self.config = {
'max_retries': 3,
'timeout': 180,
'enable_caching': True,
'low_vram_mode': False, # We have enough VRAM
'enable_rigging': False # Disable rigging by default for faster generation
}
def _cleanup_memory(self):
"""Clear GPU memory"""
if self.device == "cuda":
torch.cuda.empty_cache()
torch.cuda.synchronize()
gc.collect()
def _lazy_load_model(self, model_type: str):
"""Lazy loading with memory optimization"""
if self.model_loaded[model_type]:
return self.models[model_type]
# Clear memory before loading new model
self._cleanup_memory()
try:
if model_type == 'stt':
self.models['stt'] = KyutaiSTTProcessor(device=self.device)
elif model_type == 'text_gen':
self.models['text_gen'] = QwenTextGenerator(device=self.device)
elif model_type == 'image_gen':
self.models['image_gen'] = OmniGenImageGenerator(device=self.device)
elif model_type == '3d_gen':
self.models['3d_gen'] = Hunyuan3DGenerator(device=self.device)
elif model_type == 'rigging':
self.models['rigging'] = UniRigProcessor(device=self.device)
self.model_loaded[model_type] = True
return self.models[model_type]
except Exception as e:
print(f"Failed to load {model_type}: {e}")
return None
def _unload_model(self, model_type: str):
"""Unload model to free memory"""
if model_type in self.models and self.model_loaded[model_type]:
# Don't try to move models to CPU - just delete them
# Moving to CPU can fail with meta tensors or when using CPU offloading
try:
# If the model has a pipeline attribute, delete it first
if hasattr(self.models[model_type], 'pipeline'):
if self.models[model_type].pipeline is not None:
del self.models[model_type].pipeline
# Delete the model wrapper
del self.models[model_type]
except Exception as e:
print(f"Warning during model unload: {e}")
self.model_loaded[model_type] = False
self._cleanup_memory()
@spaces.GPU(duration=300)
def generate_monster(self,
audio_input: Optional[str] = None,
text_input: Optional[str] = None,
reference_images: Optional[List] = None,
user_id: Optional[str] = None) -> Dict[str, Any]:
"""Main monster generation pipeline"""
generation_log = {
'user_id': user_id,
'timestamp': datetime.now().isoformat(),
'stages_completed': [],
'fallbacks_used': [],
'success': False,
'errors': []
}
try:
print("π Starting monster generation pipeline...")
# Stage 1: Speech to Text (if audio provided)
description = ""
if audio_input and os.path.exists(audio_input):
try:
print("π€ Processing audio input...")
stt_model = self._lazy_load_model('stt')
if stt_model:
description = stt_model.transcribe(audio_input)
generation_log['stages_completed'].append('stt')
print(f"β
STT completed: {description[:100]}...")
else:
raise Exception("STT model failed to load")
except Exception as e:
print(f"β STT failed: {e}")
description = text_input or "Create a friendly digital monster"
generation_log['fallbacks_used'].append('stt')
generation_log['errors'].append(f"STT error: {str(e)}")
finally:
# Unload STT to free memory
self._unload_model('stt')
else:
description = text_input or "Create a friendly digital monster"
print(f"π Using text input: {description}")
# Stage 2: Generate monster characteristics
monster_traits = {}
monster_dialogue = ""
try:
print("π§ Generating monster traits and dialogue...")
text_gen = self._lazy_load_model('text_gen')
if text_gen:
monster_traits = text_gen.generate_traits(description)
monster_dialogue = text_gen.generate_dialogue(monster_traits)
generation_log['stages_completed'].append('text_gen')
print(f"β
Text generation completed: {monster_traits.get('name', 'Unknown')}")
else:
raise Exception("Text generation model failed to load")
except Exception as e:
print(f"β Text generation failed: {e}")
monster_traits, monster_dialogue = self.fallback_manager.handle_text_gen_failure(description)
generation_log['fallbacks_used'].append('text_gen')
generation_log['errors'].append(f"Text generation error: {str(e)}")
finally:
self._unload_model('text_gen')
# Stage 3: Generate monster image
monster_image = None
try:
print("π¨ Generating monster image...")
image_gen = self._lazy_load_model('image_gen')
if image_gen:
# Create enhanced prompt from traits
image_prompt = self._create_image_prompt(description, monster_traits)
monster_image = image_gen.generate(
prompt=image_prompt,
reference_images=reference_images,
width=512,
height=512
)
generation_log['stages_completed'].append('image_gen')
print("β
Image generation completed")
else:
raise Exception("Image generation model failed to load")
except Exception as e:
print(f"β Image generation failed: {e}")
monster_image = self.fallback_manager.handle_image_gen_failure(description)
generation_log['fallbacks_used'].append('image_gen')
generation_log['errors'].append(f"Image generation error: {str(e)}")
finally:
self._unload_model('image_gen')
# Stage 4: Convert to 3D model
model_3d = None
model_3d_path = None
try:
print("π² Converting to 3D model...")
model_3d_gen = self._lazy_load_model('3d_gen')
if model_3d_gen and monster_image:
# Set a timeout for 3D generation (5 minutes)
result = None
error = None
def generate_3d():
nonlocal result, error
try:
result = model_3d_gen.image_to_3d(monster_image)
except Exception as e:
error = e
# Start 3D generation in a separate thread
thread = threading.Thread(target=generate_3d)
thread.daemon = True
thread.start()
# Wait for completion with timeout
timeout = 300 # 5 minutes
thread.join(timeout)
if thread.is_alive():
print(f"β° 3D generation timed out after {timeout} seconds")
raise Exception(f"3D generation timeout after {timeout} seconds")
if error:
raise error
if result:
model_3d = result
# Save 3D model
model_3d_path = self._save_3d_model(model_3d, user_id)
generation_log['stages_completed'].append('3d_gen')
print("β
3D generation completed")
else:
raise Exception("3D generation returned no result")
else:
raise Exception("3D generation failed - no model or image")
except Exception as e:
print(f"β 3D generation failed: {e}")
model_3d = self.fallback_manager.handle_3d_gen_failure(monster_image)
generation_log['fallbacks_used'].append('3d_gen')
generation_log['errors'].append(f"3D generation error: {str(e)}")
finally:
self._unload_model('3d_gen')
# Stage 5: Add rigging (optional, can be skipped for performance)
rigged_model = model_3d
if model_3d and self.config.get('enable_rigging', False):
try:
print("𦴠Adding rigging...")
rigging_proc = self._lazy_load_model('rigging')
if rigging_proc:
rigged_model = rigging_proc.rig_mesh(model_3d)
generation_log['stages_completed'].append('rigging')
print("β
Rigging completed")
except Exception as e:
print(f"β Rigging failed: {e}")
generation_log['fallbacks_used'].append('rigging')
generation_log['errors'].append(f"Rigging error: {str(e)}")
finally:
self._unload_model('rigging')
# Prepare download files
download_files = self._prepare_download_files(
rigged_model or model_3d,
monster_image,
user_id
)
generation_log['success'] = True
print("π Monster generation pipeline completed successfully!")
return {
'description': description,
'traits': monster_traits,
'dialogue': monster_dialogue,
'image': monster_image,
'model_3d': model_3d_path,
'download_files': download_files,
'generation_log': generation_log,
'status': 'success'
}
except Exception as e:
print(f"π₯ Pipeline error: {e}")
generation_log['error'] = str(e)
generation_log['errors'].append(f"Pipeline error: {str(e)}")
# return self.fallback_generation(description or "digital monster", generation_log)
return {
'description': description,
'traits': monster_traits,
'dialogue': monster_dialogue,
'image': monster_image,
'model_3d': model_3d_path,
'download_files': download_files,
'generation_log': generation_log,
'status': 'error'
}
def _create_image_prompt(self, base_description: str, traits: Dict) -> str:
"""Create enhanced prompt for image generation"""
prompt_parts = [base_description]
if traits:
if 'appearance' in traits:
prompt_parts.append(traits['appearance'])
if 'personality' in traits:
prompt_parts.append(f"with {traits['personality']} personality")
if 'color_scheme' in traits:
prompt_parts.append(f"featuring {traits['color_scheme']} colors")
prompt_parts.extend([
"digital monster",
"creature design",
"game character",
"high quality",
"detailed"
])
return ", ".join(prompt_parts)
def _save_3d_model(self, model_3d, user_id: Optional[str]) -> Optional[str]:
"""Save 3D model to persistent storage"""
if not model_3d:
return None
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
user_id_str = user_id or "anonymous"
filename = f"monster_{user_id_str}_{timestamp}.glb"
# Use HuggingFace Spaces persistent storage
if os.path.exists("/data"):
filepath = f"/data/models/{filename}"
else:
filepath = f"./data/models/{filename}"
os.makedirs(os.path.dirname(filepath), exist_ok=True)
# Save model (implementation depends on model format)
# This is a placeholder - actual implementation would depend on model format
with open(filepath, 'wb') as f:
if hasattr(model_3d, 'export'):
model_3d.export(f)
else:
# Fallback: save as binary data
f.write(str(model_3d).encode())
return filepath
def _prepare_download_files(self, model_3d, image, user_id: Optional[str]) -> List[str]:
"""Prepare downloadable files for user"""
files = []
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
user_id_str = user_id or "anonymous"
# Save image
if image:
if isinstance(image, Image.Image):
image_path = f"/tmp/monster_{user_id_str}_{timestamp}.png"
image.save(image_path)
files.append(image_path)
elif isinstance(image, np.ndarray):
image_path = f"/tmp/monster_{user_id_str}_{timestamp}.png"
Image.fromarray(image).save(image_path)
files.append(image_path)
# Save 3D model in multiple formats if available
if model_3d:
# GLB format
glb_path = f"/tmp/monster_{user_id_str}_{timestamp}.glb"
files.append(glb_path)
# OBJ format (optional)
obj_path = f"/tmp/monster_{user_id_str}_{timestamp}.obj"
files.append(obj_path)
return files
def fallback_generation(self, description: str, generation_log: Dict) -> Dict[str, Any]:
"""Complete fallback generation when pipeline fails"""
return self.fallback_manager.complete_fallback_generation(description, generation_log)
def cleanup(self):
"""Clean up all loaded models"""
for model_type in list(self.models.keys()):
self._unload_model(model_type)
self._cleanup_memory() |