Spaces:
Sleeping
Sleeping
File size: 3,553 Bytes
55ee22f e45f056 28895b6 55ee22f 43c6a69 e45f056 43c6a69 af46a00 43c6a69 af46a00 43c6a69 55ee22f 43c6a69 55ee22f 43c6a69 e45f056 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 |
import subprocess
subprocess.run(["pip", "install", "git+https://github.com/huggingface/transformers.git"])
subprocess.run(["pip", "install", "gliner"])
import gradio as gr
from typing import Dict, Union
from gliner import GLiNER
import gradio as gr
model = GLiNER.from_pretrained("BioMike/logical-modern-gliner-bi-base-v1.0").to("cpu")
qa_examples = [
[
"",
"For a student to graduate, they must complete all their required courses and pass the final exam. John has completed all his required courses but failed the final exam. Answer options: 1. John can graduate 2. John cannot graduate 3. John completed all his required courses 4. John passed the final exam",
0.5,
False
],
[
"",
"(P ∨ Q) → R, (R ∧ S) → T, ¬T, P. Answer options: 1. ¬R 2. ¬S 3. ¬Q 4. R 5. S 6. T",
0.5,
False
],
[
"",
"(A → B), (B → (C ∧ D)), ¬C, E → F, A, ¬F. Answer options: 1. ¬A 2. ¬B 3. ¬E 4. F",
0.5,
False
]]
def merge_entities(entities):
if not entities:
return []
merged = []
current = entities[0]
for next_entity in entities[1:]:
if next_entity['entity'] == current['entity'] and (next_entity['start'] == current['end'] + 1 or next_entity['start'] == current['end']):
current['word'] += ' ' + next_entity['word']
current['end'] = next_entity['end']
else:
merged.append(current)
current = next_entity
merged.append(current)
return merged
def process(
question:str, text, threshold: float, nested_ner: bool, labels: str = ["answer"]
) -> Dict[str, Union[str, int, float]]:
text = question + "\n" + text
r = {
"text": text,
"entities": [
{
"entity": entity["label"],
"word": entity["text"],
"start": entity["start"],
"end": entity["end"],
"score": 0,
}
for entity in model.predict_entities(
text, labels, flat_ner=not nested_ner, threshold=threshold
)
],
}
r["entities"] = merge_entities(r["entities"])
return r
with gr.Blocks(title="Question Answering Task") as qa_interface:
question = gr.Textbox(label="Question", placeholder="Enter your question here")
input_text = gr.Textbox(label="Text input", placeholder="Enter your text here")
threshold = gr.Slider(0, 1, value=0.3, step=0.01, label="Threshold", info="Lower the threshold to increase how many entities get predicted.")
nested_ner = gr.Checkbox(label="Nested NER", info="Allow for nested NER?")
output = gr.HighlightedText(label="Predicted Entities")
submit_btn = gr.Button("Submit")
examples = gr.Examples(
qa_examples,
fn=process,
inputs=[question, input_text, threshold, nested_ner],
outputs=output,
cache_examples=True
)
theme=gr.themes.Base()
input_text.submit(fn=process, inputs=[question, input_text, threshold, nested_ner], outputs=output)
question.submit(fn=process, inputs=[question, input_text, threshold, nested_ner], outputs=output)
threshold.release(fn=process, inputs=[question, input_text, threshold, nested_ner], outputs=output)
submit_btn.click(fn=process, inputs=[question, input_text, threshold, nested_ner], outputs=output)
nested_ner.change(fn=process, inputs=[question, input_text, threshold, nested_ner], outputs=output)
qa_interface.queue()
qa_interface.launch(share=True) |