File size: 25,105 Bytes
5478d4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f214779
 
5478d4e
 
 
 
 
 
 
 
 
 
b68fc7d
 
 
 
 
264c76c
b68fc7d
5478d4e
 
 
 
 
 
 
 
 
 
 
b68fc7d
 
 
 
 
 
 
 
 
 
5478d4e
 
 
 
 
 
 
 
 
7c0fd7a
896eec6
70b6774
 
 
 
 
 
 
 
 
 
7c0fd7a
 
70b6774
 
 
 
896eec6
 
 
 
 
 
 
 
 
 
7c0fd7a
5478d4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b92f45b
8fa31fb
 
 
 
5478d4e
5b0f63c
5478d4e
896eec6
 
 
 
 
 
 
 
 
 
 
5478d4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7d74d1a
 
 
5478d4e
 
 
 
 
 
 
 
 
 
 
 
7c0fd7a
5478d4e
 
 
 
 
 
 
 
 
7c0fd7a
5478d4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
70b6774
896eec6
 
7c0fd7a
5478d4e
70b6774
7c0fd7a
 
0a28218
5478d4e
0a28218
5b0f63c
 
 
 
 
 
 
 
 
 
 
 
0a28218
5b0f63c
 
 
5478d4e
 
5b0f63c
5478d4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
# Access: https://BinKhoaLe1812-Sall-eGarbageDetection.hf.space/ui

# ───────────────────────── app.py (Sall-e demo) ─────────────────────────
# FastAPI ▸ upload image ▸ multi-model garbage detection ▸ ADE-20K
# semantic segmentation (Water / Garbage) ▸ A* + KNN navigation ▸ H.264 video
# =======================================================================

import os, uuid, threading, shutil, time, heapq, cv2, numpy as np
from PIL import Image
import uvicorn
from fastapi import FastAPI, File, UploadFile, Request
from fastapi.responses import HTMLResponse, StreamingResponse, Response
from fastapi.staticfiles import StaticFiles

# ── Vision libs ─────────────────────────────────────────────────────────
import torch, yolov5, ffmpeg
from ultralytics import YOLO
from transformers import (
    DetrImageProcessor, DetrForObjectDetection,
    SegformerFeatureExtractor, SegformerForSemanticSegmentation
)
from sklearn.neighbors import NearestNeighbors

# ── Folders / files ─────────────────────────────────────────────────────
BASE        = "/home/user/app"
CACHE       = f"{BASE}/cache"
UPLOAD_DIR  = f"{CACHE}/uploads"
OUTPUT_DIR  = f"{BASE}/outputs"
MODEL_DIR   = f"{BASE}/model"
SPRITE      = f"{BASE}/sprite.png"

os.makedirs(UPLOAD_DIR, exist_ok=True)
os.makedirs(OUTPUT_DIR, exist_ok=True)
os.makedirs(CACHE     , exist_ok=True)
os.environ["TRANSFORMERS_CACHE"] = CACHE
os.environ["HF_HOME"]           = CACHE

# ── Load models once  ───────────────────────────────────────────────────
print("🔄  Loading models …")
model_self  = YOLO(f"{MODEL_DIR}/garbage_detector.pt")                 # YOLOv11(l)
model_yolo5 = yolov5.load(f"{MODEL_DIR}/yolov5-detect-trash-classification.pt")
processor_detr = DetrImageProcessor.from_pretrained(f"{MODEL_DIR}/detr")
model_detr     = DetrForObjectDetection.from_pretrained(f"{MODEL_DIR}/detr")
feat_extractor = SegformerFeatureExtractor.from_pretrained(
                    "nvidia/segformer-b4-finetuned-ade-512-512")
segformer      = SegformerForSemanticSegmentation.from_pretrained(
                    "nvidia/segformer-b4-finetuned-ade-512-512")
print("✅  Models ready\n")

# ── ADE-20K palette + custom mapping (verbatim) ─────────────────────────
# ADE20K palette
ade_palette = np.array([
    [0, 0, 0], [120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50],
    [4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255], [230, 230, 230],
    [4, 250, 7], [224, 5, 255], [235, 255, 7], [150, 5, 61], [120, 120, 70],
    [8, 255, 51], [255, 6, 82], [143, 255, 140], [204, 255, 4], [255, 51, 7],
    [204, 70, 3], [0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255],
    [255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220], [255, 9, 92],
    [112, 9, 255], [8, 255, 214], [7, 255, 224], [255, 184, 6], [10, 255, 71],
    [255, 41, 10], [7, 255, 255], [224, 255, 8], [102, 8, 255], [255, 61, 6],
    [255, 194, 7], [255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153],
    [6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255], [140, 140, 140],
    [250, 10, 15], [20, 255, 0], [31, 255, 0], [255, 31, 0], [255, 224, 0],
    [153, 255, 0], [0, 0, 255], [255, 71, 0], [0, 235, 255], [0, 173, 255],
    [31, 0, 255], [11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255],
    [0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0], [255, 102, 0],
    [194, 255, 0], [0, 143, 255], [51, 255, 0], [0, 82, 255], [0, 255, 41],
    [0, 255, 173], [10, 0, 255], [173, 255, 0], [0, 255, 153], [255, 92, 0],
    [255, 0, 255], [255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20],
    [255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255], [255, 0, 204],
    [0, 255, 194], [0, 255, 82], [0, 10, 255], [0, 112, 255], [51, 0, 255],
    [0, 194, 255], [0, 122, 255], [0, 255, 163], [255, 153, 0], [0, 255, 10],
    [255, 112, 0], [143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0],
    [8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255], [255, 0, 31],
    [0, 184, 255], [0, 214, 255], [255, 0, 112], [92, 255, 0], [0, 224, 255],
    [112, 224, 255], [70, 184, 160], [163, 0, 255], [153, 0, 255], [71, 255, 0],
    [255, 0, 163], [255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0],
    [255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0], [10, 190, 212],
    [214, 255, 0], [0, 204, 255], [20, 0, 255], [255, 255, 0], [0, 153, 255],
    [0, 41, 255], [0, 255, 204], [41, 0, 255], [41, 255, 0], [173, 0, 255],
    [0, 245, 255], [71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255],
    [184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194], [102, 255, 0],
    [92, 0, 255]
], dtype=np.uint8)

custom_class_map = {
    "Garbage":                 [(255, 8, 41), (235, 255, 7)],
    "Water":                   [(0, 102, 200), (11, 102, 255), (31, 0, 255), (10, 0, 255)],
    "Grass / Vegetation":      [(10, 255, 71), (143, 255, 140)],
    "Tree / Natural Obstacle": [(4, 200, 3), (235, 12, 255), (255, 6, 82), (255, 163, 0)],
    "Sand / Soil / Ground":    [(80, 50, 50), (230, 230, 230)],
    "Buildings / Structures":  [(255, 0, 255), (184, 0, 255), (120, 120, 120), (7, 255, 224)],
    "Sky / Background":        [(180, 120, 120)],
    "Undetecable":             [(0, 0, 0)],
    "Unknown Class": []
}
TOL = 30  # RGB tolerance

# Segment class [150, 5, 61] is only detectable as garbage if it's large enough 
def interpret_rgb_class(decoded_img):
    ambiguous_rgb = np.array([150, 5, 61])
    matches = np.all(np.abs(decoded_img - ambiguous_rgb) <= TOL, axis=-1)
    match_ratio = np.count_nonzero(matches) / matches.size
    return "garbage" if match_ratio > 0.15 else "sand"

# Masking zones (Garbage and Water zone to be travelable)
def build_masks(seg):
    """
    Returns three binary masks at (H,W):
    water_mask   – 1 = water
    garbage_mask – 1 = semantic “Garbage” pixels
    movable_mask – union of water & garbage (robot can travel here)
    """
    decoded = ade_palette[seg]
    water_mask   = np.zeros(seg.shape, np.uint8)
    garbage_mask = np.zeros_like(water_mask)
    # Resolve ambiguity: (150,5,61) → Sand or Garbage?
    context_label = interpret_rgb_class(decoded)
    resolved_map = custom_class_map.copy()
    # Dynamically re-assign the ambiguous RGB class
    if context_label == "garbage":
        resolved_map["Garbage"].append((150, 5, 61))
        resolved_map["Sand / Soil / Ground"] = [rgb for rgb in resolved_map["Sand / Soil / Ground"] if rgb != (150, 5, 61)]
    else: # Fall back as appointed to be sth else
        resolved_map["Sand / Soil / Ground"].append((150, 5, 61))
        resolved_map["Garbage"] = [rgb for rgb in resolved_map["Garbage"] if rgb != (150, 5, 61)]
    # Append water pixels to water_mask
    for rgb in custom_class_map["Water"]:
        water_mask |= (np.abs(decoded - rgb).max(axis=-1) <= TOL)
    # Append gb pixels to garbage_mask
    for rgb in custom_class_map["Garbage"]:
        garbage_mask |= (np.abs(decoded - rgb).max(axis=-1) <= TOL)
    movable_mask = water_mask | garbage_mask
    return water_mask, garbage_mask, movable_mask

# Garbage mask can be highlighted in red
def highlight_chunk_masks_on_frame(frame, labels, objs, color_uncollected=(0, 0, 128), color_collected=(0, 128, 0), alpha=0.3):
    """
    Overlays semi-transparent colored regions for garbage chunks on the frame.
    `objs` must have 'pos' and 'col' keys. The collection status changes the overlay color.
    """
    overlay = frame.copy()
    for i, obj in enumerate(objs):
        x, y = obj["pos"]
        lab = labels[y, x]
        if lab == 0:
            continue
        mask = (labels == lab).astype(np.uint8)
        contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
        color = color_collected if obj["col"] else color_uncollected
        cv2.drawContours(overlay, contours, -1, color, thickness=cv2.FILLED)
    # Blend overlay with original frame using alpha
    return cv2.addWeighted(overlay, alpha, frame, 1 - alpha, 0)
# Water mask to be blue
def highlight_water_mask_on_frame(frame, binary_mask, color=(255, 0, 0), alpha=0.3):
    """
    Overlays semi-transparent colored mask (binary) on the frame.
    """
    overlay = frame.copy()
    mask = binary_mask.astype(np.uint8) * 255
    contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    cv2.drawContours(overlay, contours, -1, color, thickness=cv2.FILLED)
    return cv2.addWeighted(overlay, alpha, frame, 1 - alpha, 0)

# ── A* and KNN over binary water grid ─────────────────────────────────
def astar(start, goal, occ):
    h   = lambda a,b: abs(a[0]-b[0])+abs(a[1]-b[1])
    N8  = [(-1,-1),(-1,0),(-1,1),(0,-1),(0,1),(1,-1),(1,0),(1,1)]
    openq=[(0,start)]; g={start:0}; came={}
    while openq:
        _,cur=heapq.heappop(openq)
        if cur==goal:
            p=[cur];                   # reconstruct
            while cur in came: cur=came[cur]; p.append(cur)
            return p[::-1]
        for dx,dy in N8:
            nx,ny=cur[0]+dx,cur[1]+dy
            if not (0<=nx<640 and 0<=ny<640): continue
            if occ[ny,nx]==0: continue
            ng=g[cur]+1
            if (nx,ny) not in g or ng<g[(nx,ny)]:
                g[(nx,ny)]=ng
                f=ng+h((nx,ny),goal)
                heapq.heappush(openq,(f,(nx,ny)))
                came[(nx,ny)]=cur
    return []

# KNN fit
def knn_path(start, targets, occ):
    todo = targets[:]; path=[]
    cur  = tuple(start)
    while todo:
        nbrs = NearestNeighbors(n_neighbors=1).fit(todo)
        _,idx = nbrs.kneighbors([cur]); nxt=tuple(todo[idx[0][0]])
        seg  = astar(cur, nxt, occ)
        if seg:
            if path and seg[0]==path[-1]: seg=seg[1:]
            path.extend(seg)
        cur  = nxt; todo.remove(list(nxt))
    return path

# ── Robot sprite/class -──────────────────────────────────────────────────
class Robot:
    def __init__(self, sprite, speed=2000): # Declare the robot's physical stats and routing (position, speed, movement, path)
        img = Image.open(sprite).convert("RGBA").resize((40, 40))
        self.png = np.array(img)
        if self.png.shape[-1] != 4:
            raise ValueError("Sprite image must have 4 channels (RGBA)")
        self.png = np.array(Image.open(sprite).convert("RGBA").resize((40,40)))
        self.pos = [20,20]; self.speed=speed
    def step(self, path):
        while path:
            dx, dy = path[0][0] - self.pos[0], path[0][1] - self.pos[1]
            dist = (dx * dx + dy * dy) ** 0.5
            if dist <= self.speed:
                self.pos = list(path.pop(0))
            else:
                r = self.speed / dist
                self.pos = [int(self.pos[0] + dx * r), int(self.pos[1] + dy * r)]
            # Break after one logical move to avoid overshooting
            break


# ── FastAPI & HTML content (original styling) ───────────────────────────
# HTML Content for UI (streamed with FastAPI HTML renderer)
HTML_CONTENT = """
<!DOCTYPE html>
<html>
<head>
    <title>Sall-e Garbage Detection</title>
    <link rel="website icon" type="png" href="/static/icon.png" >
    <style>
        body {
            font-family: 'Roboto', sans-serif; background: linear-gradient(270deg, rgb(44, 13, 58), rgb(13, 58, 56)); color: white; text-align: center; margin: 0; padding: 50px;
        }
        h1 {
            font-size: 40px;
            background: linear-gradient(to right, #f32170, #ff6b08, #cf23cf, #eedd44);
            -webkit-text-fill-color: transparent;
            -webkit-background-clip: text;
            font-weight: bold;
        }
        #upload-container {
            background: rgba(255, 255, 255, 0.2); padding: 20px; width: 70%; border-radius: 10px; display: inline-block; box-shadow: 0px 0px 10px rgba(255, 255, 255, 0.3);
        }
        #upload {
            font-size: 18px; padding: 10px; border-radius: 5px; border: none; background: #fff; cursor: pointer;
        }
        #loader {
            margin-top: 10px; margin-left: auto; margin-right: auto; width: 60px; height: 60px; font-size: 12px; text-align: center;
        }
        p {
            margin-top: 10px; font-size: 12px; color: #3498db;
        }
        #spinner {
            border: 8px solid #f3f3f3; border-top: 8px solid rgb(117 7 7); border-radius: 50%; animation: spin 1s linear infinite; width: 40px; height: 40px; margin: auto;
        }
        @keyframes spin {
            0% { transform: rotate(0deg); }
            100% { transform: rotate(360deg); }
        }
        #outputVideo {
            margin-top: 20px; width: 70%; margin-left: auto; margin-right: auto; max-width: 640px; border-radius: 10px; box-shadow: 0px 0px 10px rgba(255, 255, 255, 0.3);
        }
        #downloadBtn {
            display: block; visibility: hidden; width: 20%; margin-top: 20px; margin-left: auto; margin-right: auto; padding: 10px 15px; font-size: 16px; background: #27ae60; color: white; border: none; border-radius: 5px; cursor: pointer; text-decoration: none;
        }
        #downloadBtn:hover {
            background: #950606;
        }
        .hidden {
            display: none;
        }
        @media (max-width: 860px) {
            h1 { font-size: 30px; }
        }
        @media (max-width: 720px) {
            h1 { font-size: 25px; }
            #upload { font-size: 15px; }
            #downloadBtn { font-size: 13px; }
        }
        @media (max-width: 580px) {
            h1 { font-size: 20px; }
            #upload { font-size: 10px; }
            #downloadBtn { font-size: 10px; }
        }
        @media (max-width: 580px) {
            h1 { font-size: 10px; }
        }
        @media (max-width: 460px) {
            #upload { font-size: 7px; }
        }
        @media (max-width: 400px) {
            h1 { font-size: 14px; }
        }
        @media (max-width: 370px) {
            h1 { font-size: 11px; }
            #upload { font-size: 5px; }
            #downloadBtn { font-size: 7px; }
        }
        @media (max-width: 330px) {
            h1 { font-size: 8px; }
            #upload { font-size: 3px; }
            #downloadBtn { font-size: 5px; }
        }
    </style>
</head>
<body>
    <h1>Upload an Image for Garbage Detection</h1>
    <div id="upload-container">
        <input type="file" id="upload" accept="image/*">
    </div>
    <div id="loader" class="loader hidden">
        <div id="spinner"></div>
        <!-- <p>Garbage detection model processing...</p> -->
    </div>
    <video id="outputVideo" class="outputVideo" controls></video>
    <a id="downloadBtn" class="downloadBtn">Download Video</a>
    <script>
        document.addEventListener("DOMContentLoaded", function() {
            document.getElementById("outputVideo").classList.add("hidden");
            document.getElementById("downloadBtn").style.visibility = "hidden";
        });
        document.getElementById('upload').addEventListener('change', async function(event) {
            event.preventDefault();
            const loader = document.getElementById("loader");
            const outputVideo = document.getElementById("outputVideo");
            const downloadBtn = document.getElementById("downloadBtn");
            let file = event.target.files[0];
            if (file) {
                let formData = new FormData();
                formData.append("file", file);
                loader.classList.remove("hidden");
                outputVideo.classList.add("hidden");
                document.getElementById("downloadBtn").style.visibility = "hidden";
                let response = await fetch('/upload/', { method: 'POST', body: formData });
                let result = await response.json();
                let user_id = result.user_id;  
                while (true) {
                    let checkResponse = await fetch(`/check_video/${user_id}`);
                    let checkResult = await checkResponse.json();
                    if (checkResult.ready) break;
                    await new Promise(resolve => setTimeout(resolve, 3000)); // Wait 3s before checking again
                }
                loader.classList.add("hidden");
                let videoUrl = `/video/${user_id}?t=${new Date().getTime()}`;
                outputVideo.src = videoUrl;
                outputVideo.load();
                outputVideo.play();
                outputVideo.setAttribute("crossOrigin", "anonymous");
                outputVideo.classList.remove("hidden");
                downloadBtn.href = videoUrl;
                document.getElementById("downloadBtn").style.visibility = "visible";
            }
        });
        document.getElementById('outputVideo').addEventListener('error', function() {
            console.log("⚠️ Video could not be played, showing download button instead.");
            document.getElementById('outputVideo').classList.add("hidden");
            document.getElementById("downloadBtn").style.visibility = "visible";
        });
    </script>
</body>
</html>
"""

# ── Static-web ────────────────────────────────────────────────────────── 
app = FastAPI()
app.mount("/static", StaticFiles(directory=BASE), name="static")
video_ready={}
@app.get("/ui", response_class=HTMLResponse)
def ui(): return HTML_CONTENT
def _uid(): return uuid.uuid4().hex[:8]

# ── End-points ──────────────────────────────────────────────────────────
# User upload environment img here
@app.post("/upload/")
async def upload(file:UploadFile=File(...)):
    uid=_uid(); dest=f"{UPLOAD_DIR}/{uid}_{file.filename}"
    with open(dest,"wb") as bf: shutil.copyfileobj(file.file,bf)
    threading.Thread(target=_pipeline, args=(uid,dest)).start()
    return {"user_id":uid}

# Health check, make sure the video generator is alive and debug which video id is processed (multiple video can be processed at 1 worker)
@app.get("/check_video/{uid}")
def chk(uid:str): return {"ready":video_ready.get(uid,False)}

# Where the final video being saved
@app.get("/video/{uid}")
def stream(uid:str):
    vid=f"{OUTPUT_DIR}/{uid}.mp4"
    if not os.path.exists(vid): return Response(status_code=404)
    return StreamingResponse(open(vid,"rb"), media_type="video/mp4")

# ── Core pipeline (runs in background thread) ───────────────────────────
def _pipeline(uid,img_path):
    print(f"▶️ [{uid}] processing")
    bgr=cv2.resize(cv2.imread(img_path),(640,640)); rgb=cv2.cvtColor(bgr,cv2.COLOR_BGR2RGB)
    pil=Image.fromarray(rgb)

    # 1- Segmentation → masking each segmented zone with pytorch
    with torch.no_grad():
        inputs = feat_extractor(pil, return_tensors="pt")
        seg_logits = segformer(**inputs).logits
    # Tensor run by CPU
    seg_tensor = seg_logits.argmax(1)[0].cpu()
    if seg_tensor.numel() == 0:
        print(f"❌ [{uid}] segmentation failed (empty tensor)")
        video_ready[uid] = True
        return
    # Resize the tensor to 640x640
    seg = cv2.resize(seg_tensor.numpy(), (640, 640), interpolation=cv2.INTER_NEAREST)
    print(f"🧪 [{uid}] segmentation input shape: {inputs['pixel_values'].shape}")
    water_mask, garbage_mask, movable_mask = build_masks(seg) # movable zone = water and garbage masks

    # 2- Garbage detection (3 models) → keep centres on water 
    detections=[]
    # Detect garbage chunks (from segmentation)
    num_cc, labels = cv2.connectedComponents(garbage_mask.astype(np.uint8))
    chunk_centres = []
    for lab in range(1, num_cc):
        ys, xs = np.where(labels == lab)
        if xs.size == 0: # safety
            continue
        chunk_centres.append([int(xs.mean()), int(ys.mean())])
    print(f"🧠 {len(chunk_centres)} garbage chunk detected")
    # Detect garbage object by within travelable zones
    for r in model_self(bgr):                      # YOLOv11 (self-trained)
        detections += [b.xyxy[0].tolist() for b in r.boxes]
    r = model_yolo5(bgr)                           # YOLOv5
    if hasattr(r, 'pred') and len(r.pred) > 0:
        detections += [p[:4].tolist() for p in r.pred[0]]
    inp=processor_detr(images=pil,return_tensors="pt")
    with torch.no_grad(): out=model_detr(**inp)    # DETR
    post = processor_detr.post_process_object_detection(
        outputs=out,
        target_sizes=torch.tensor([pil.size[::-1]]),
        threshold=0.5
    )[0]
    detections += [b.tolist() for b in post["boxes"]]
    # centre & mask filter (the garbage lies within travelable zone are collectable)
    centres = []
    for x1, y1, x2, y2 in detections: # Define IoU heuristic
        '''
        We conduct a 20% allowance whether the center 
        of the detected garbage's bbox lies within the travelable zone
        which was segmented earlier to be the water and garbage zone
        '''
        x1, y1, x2, y2 = map(int, [x1, y1, x2, y2])
        x1 = max(0, min(x1, 639)); y1 = max(0, min(y1, 639))
        x2 = max(0, min(x2, 639)); y2 = max(0, min(y2, 639))
        box_mask = movable_mask[y1:y2, x1:x2]              # ← use MOVABLE mask
        if box_mask.size == 0:
            continue
        if np.count_nonzero(box_mask) / box_mask.size >= 0.2:
            centres.append([int((x1 + x2) / 2), int((y1 + y2) / 2)])
    # add chunk centres and deduplicate
    centres.extend(chunk_centres)
    centres = [list(c) for c in {tuple(c) for c in centres}]
    if not centres: # No garbages within travelable zone
        print(f"🛑 [{uid}] no reachable garbage"); video_ready[uid]=True; return
    else: # Garbage within valid travelable zone
        print(f"🧠 {len(centres)} garbage objects on water selected from {len(detections)} detections")

    # 3- Global route
    robot = Robot(SPRITE)
    path  = knn_path(robot.pos, centres, movable_mask)

    # 4- Video synthesis
    out_tmp=f"{OUTPUT_DIR}/{uid}_tmp.mp4"
    vw=cv2.VideoWriter(out_tmp,cv2.VideoWriter_fourcc(*"mp4v"),10.0,(640,640))
    objs=[{"pos":p,"col":False} for p in centres]
    bg = bgr.copy()
    for _ in range(15000): # safety frames
        frame=bg.copy()
        # Draw garbage chunk masks in red-to-green (semi-transparent)
        frame = highlight_chunk_masks_on_frame(frame, labels, objs)                               # 🔴 garbage overlay
        frame = highlight_water_mask_on_frame(frame, water_mask)  # 🔵 water overlay
        # Draw object detections as red (to green) dots
        for o in objs:
            color = (0, 0, 128) if not o["col"] else (0, 128, 0)
            x, y = o["pos"]
            cv2.circle(frame, (x, y), 6, color, -1)
        # Robot displacement
        robot.step(path)
        sp = robot.png
        sprite_h, sprite_w = sp.shape[:2]
        rx, ry = robot.pos
        x1, y1 = rx - sprite_w // 2, ry - sprite_h // 2
        x2, y2 = x1 + sprite_w, y1 + sprite_h
        # Clip boundaries to image size
        x1_clip, x2_clip = max(0, x1), min(frame.shape[1], x2)
        y1_clip, y2_clip = max(0, y1), min(frame.shape[0], y2)
        # Adjust sprite crop accordingly
        sx1, sy1 = x1_clip - x1, y1_clip - y1
        sx2, sy2 = sprite_w - (x2 - x2_clip), sprite_h - (y2 - y2_clip)
        sprite_crop = sp[sy1:sy2, sx1:sx2]
        alpha = sprite_crop[:, :, 3] / 255.0
        alpha = np.stack([alpha] * 3, axis=-1)
        bgroi = frame[y1_clip:y2_clip, x1_clip:x2_clip]
        blended = (alpha * sprite_crop[:, :, :3] + (1 - alpha) * bgroi).astype(np.uint8)
        frame[y1_clip:y2_clip, x1_clip:x2_clip] = blended
        # collection check
        for o in objs:
            if not o["col"] and np.hypot(o["pos"][0]-robot.pos[0], o["pos"][1]-robot.pos[1]) <= 20:
                o["col"]=True
        vw.write(frame)
        if all(o["col"] for o in objs): break
        if not path: break
    vw.release()

    # 5- Convert to H.264
    final=f"{OUTPUT_DIR}/{uid}.mp4"
    ffmpeg.input(out_tmp).output(final,vcodec="libx264",pix_fmt="yuv420p").run(overwrite_output=True,quiet=True)
    os.remove(out_tmp); video_ready[uid]=True
    print(f"✅ [{uid}] video ready → {final}")

# ── Run locally (HF Space ignores since built with Docker image) ────────
if __name__=="__main__":
    uvicorn.run(app,host="0.0.0.0",port=7860)