File size: 25,105 Bytes
5478d4e f214779 5478d4e b68fc7d 264c76c b68fc7d 5478d4e b68fc7d 5478d4e 7c0fd7a 896eec6 70b6774 7c0fd7a 70b6774 896eec6 7c0fd7a 5478d4e b92f45b 8fa31fb 5478d4e 5b0f63c 5478d4e 896eec6 5478d4e 7d74d1a 5478d4e 7c0fd7a 5478d4e 7c0fd7a 5478d4e 70b6774 896eec6 7c0fd7a 5478d4e 70b6774 7c0fd7a 0a28218 5478d4e 0a28218 5b0f63c 0a28218 5b0f63c 5478d4e 5b0f63c 5478d4e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 |
# Access: https://BinKhoaLe1812-Sall-eGarbageDetection.hf.space/ui
# ───────────────────────── app.py (Sall-e demo) ─────────────────────────
# FastAPI ▸ upload image ▸ multi-model garbage detection ▸ ADE-20K
# semantic segmentation (Water / Garbage) ▸ A* + KNN navigation ▸ H.264 video
# =======================================================================
import os, uuid, threading, shutil, time, heapq, cv2, numpy as np
from PIL import Image
import uvicorn
from fastapi import FastAPI, File, UploadFile, Request
from fastapi.responses import HTMLResponse, StreamingResponse, Response
from fastapi.staticfiles import StaticFiles
# ── Vision libs ─────────────────────────────────────────────────────────
import torch, yolov5, ffmpeg
from ultralytics import YOLO
from transformers import (
DetrImageProcessor, DetrForObjectDetection,
SegformerFeatureExtractor, SegformerForSemanticSegmentation
)
from sklearn.neighbors import NearestNeighbors
# ── Folders / files ─────────────────────────────────────────────────────
BASE = "/home/user/app"
CACHE = f"{BASE}/cache"
UPLOAD_DIR = f"{CACHE}/uploads"
OUTPUT_DIR = f"{BASE}/outputs"
MODEL_DIR = f"{BASE}/model"
SPRITE = f"{BASE}/sprite.png"
os.makedirs(UPLOAD_DIR, exist_ok=True)
os.makedirs(OUTPUT_DIR, exist_ok=True)
os.makedirs(CACHE , exist_ok=True)
os.environ["TRANSFORMERS_CACHE"] = CACHE
os.environ["HF_HOME"] = CACHE
# ── Load models once ───────────────────────────────────────────────────
print("🔄 Loading models …")
model_self = YOLO(f"{MODEL_DIR}/garbage_detector.pt") # YOLOv11(l)
model_yolo5 = yolov5.load(f"{MODEL_DIR}/yolov5-detect-trash-classification.pt")
processor_detr = DetrImageProcessor.from_pretrained(f"{MODEL_DIR}/detr")
model_detr = DetrForObjectDetection.from_pretrained(f"{MODEL_DIR}/detr")
feat_extractor = SegformerFeatureExtractor.from_pretrained(
"nvidia/segformer-b4-finetuned-ade-512-512")
segformer = SegformerForSemanticSegmentation.from_pretrained(
"nvidia/segformer-b4-finetuned-ade-512-512")
print("✅ Models ready\n")
# ── ADE-20K palette + custom mapping (verbatim) ─────────────────────────
# ADE20K palette
ade_palette = np.array([
[0, 0, 0], [120, 120, 120], [180, 120, 120], [6, 230, 230], [80, 50, 50],
[4, 200, 3], [120, 120, 80], [140, 140, 140], [204, 5, 255], [230, 230, 230],
[4, 250, 7], [224, 5, 255], [235, 255, 7], [150, 5, 61], [120, 120, 70],
[8, 255, 51], [255, 6, 82], [143, 255, 140], [204, 255, 4], [255, 51, 7],
[204, 70, 3], [0, 102, 200], [61, 230, 250], [255, 6, 51], [11, 102, 255],
[255, 7, 71], [255, 9, 224], [9, 7, 230], [220, 220, 220], [255, 9, 92],
[112, 9, 255], [8, 255, 214], [7, 255, 224], [255, 184, 6], [10, 255, 71],
[255, 41, 10], [7, 255, 255], [224, 255, 8], [102, 8, 255], [255, 61, 6],
[255, 194, 7], [255, 122, 8], [0, 255, 20], [255, 8, 41], [255, 5, 153],
[6, 51, 255], [235, 12, 255], [160, 150, 20], [0, 163, 255], [140, 140, 140],
[250, 10, 15], [20, 255, 0], [31, 255, 0], [255, 31, 0], [255, 224, 0],
[153, 255, 0], [0, 0, 255], [255, 71, 0], [0, 235, 255], [0, 173, 255],
[31, 0, 255], [11, 200, 200], [255, 82, 0], [0, 255, 245], [0, 61, 255],
[0, 255, 112], [0, 255, 133], [255, 0, 0], [255, 163, 0], [255, 102, 0],
[194, 255, 0], [0, 143, 255], [51, 255, 0], [0, 82, 255], [0, 255, 41],
[0, 255, 173], [10, 0, 255], [173, 255, 0], [0, 255, 153], [255, 92, 0],
[255, 0, 255], [255, 0, 245], [255, 0, 102], [255, 173, 0], [255, 0, 20],
[255, 184, 184], [0, 31, 255], [0, 255, 61], [0, 71, 255], [255, 0, 204],
[0, 255, 194], [0, 255, 82], [0, 10, 255], [0, 112, 255], [51, 0, 255],
[0, 194, 255], [0, 122, 255], [0, 255, 163], [255, 153, 0], [0, 255, 10],
[255, 112, 0], [143, 255, 0], [82, 0, 255], [163, 255, 0], [255, 235, 0],
[8, 184, 170], [133, 0, 255], [0, 255, 92], [184, 0, 255], [255, 0, 31],
[0, 184, 255], [0, 214, 255], [255, 0, 112], [92, 255, 0], [0, 224, 255],
[112, 224, 255], [70, 184, 160], [163, 0, 255], [153, 0, 255], [71, 255, 0],
[255, 0, 163], [255, 204, 0], [255, 0, 143], [0, 255, 235], [133, 255, 0],
[255, 0, 235], [245, 0, 255], [255, 0, 122], [255, 245, 0], [10, 190, 212],
[214, 255, 0], [0, 204, 255], [20, 0, 255], [255, 255, 0], [0, 153, 255],
[0, 41, 255], [0, 255, 204], [41, 0, 255], [41, 255, 0], [173, 0, 255],
[0, 245, 255], [71, 0, 255], [122, 0, 255], [0, 255, 184], [0, 92, 255],
[184, 255, 0], [0, 133, 255], [255, 214, 0], [25, 194, 194], [102, 255, 0],
[92, 0, 255]
], dtype=np.uint8)
custom_class_map = {
"Garbage": [(255, 8, 41), (235, 255, 7)],
"Water": [(0, 102, 200), (11, 102, 255), (31, 0, 255), (10, 0, 255)],
"Grass / Vegetation": [(10, 255, 71), (143, 255, 140)],
"Tree / Natural Obstacle": [(4, 200, 3), (235, 12, 255), (255, 6, 82), (255, 163, 0)],
"Sand / Soil / Ground": [(80, 50, 50), (230, 230, 230)],
"Buildings / Structures": [(255, 0, 255), (184, 0, 255), (120, 120, 120), (7, 255, 224)],
"Sky / Background": [(180, 120, 120)],
"Undetecable": [(0, 0, 0)],
"Unknown Class": []
}
TOL = 30 # RGB tolerance
# Segment class [150, 5, 61] is only detectable as garbage if it's large enough
def interpret_rgb_class(decoded_img):
ambiguous_rgb = np.array([150, 5, 61])
matches = np.all(np.abs(decoded_img - ambiguous_rgb) <= TOL, axis=-1)
match_ratio = np.count_nonzero(matches) / matches.size
return "garbage" if match_ratio > 0.15 else "sand"
# Masking zones (Garbage and Water zone to be travelable)
def build_masks(seg):
"""
Returns three binary masks at (H,W):
water_mask – 1 = water
garbage_mask – 1 = semantic “Garbage” pixels
movable_mask – union of water & garbage (robot can travel here)
"""
decoded = ade_palette[seg]
water_mask = np.zeros(seg.shape, np.uint8)
garbage_mask = np.zeros_like(water_mask)
# Resolve ambiguity: (150,5,61) → Sand or Garbage?
context_label = interpret_rgb_class(decoded)
resolved_map = custom_class_map.copy()
# Dynamically re-assign the ambiguous RGB class
if context_label == "garbage":
resolved_map["Garbage"].append((150, 5, 61))
resolved_map["Sand / Soil / Ground"] = [rgb for rgb in resolved_map["Sand / Soil / Ground"] if rgb != (150, 5, 61)]
else: # Fall back as appointed to be sth else
resolved_map["Sand / Soil / Ground"].append((150, 5, 61))
resolved_map["Garbage"] = [rgb for rgb in resolved_map["Garbage"] if rgb != (150, 5, 61)]
# Append water pixels to water_mask
for rgb in custom_class_map["Water"]:
water_mask |= (np.abs(decoded - rgb).max(axis=-1) <= TOL)
# Append gb pixels to garbage_mask
for rgb in custom_class_map["Garbage"]:
garbage_mask |= (np.abs(decoded - rgb).max(axis=-1) <= TOL)
movable_mask = water_mask | garbage_mask
return water_mask, garbage_mask, movable_mask
# Garbage mask can be highlighted in red
def highlight_chunk_masks_on_frame(frame, labels, objs, color_uncollected=(0, 0, 128), color_collected=(0, 128, 0), alpha=0.3):
"""
Overlays semi-transparent colored regions for garbage chunks on the frame.
`objs` must have 'pos' and 'col' keys. The collection status changes the overlay color.
"""
overlay = frame.copy()
for i, obj in enumerate(objs):
x, y = obj["pos"]
lab = labels[y, x]
if lab == 0:
continue
mask = (labels == lab).astype(np.uint8)
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
color = color_collected if obj["col"] else color_uncollected
cv2.drawContours(overlay, contours, -1, color, thickness=cv2.FILLED)
# Blend overlay with original frame using alpha
return cv2.addWeighted(overlay, alpha, frame, 1 - alpha, 0)
# Water mask to be blue
def highlight_water_mask_on_frame(frame, binary_mask, color=(255, 0, 0), alpha=0.3):
"""
Overlays semi-transparent colored mask (binary) on the frame.
"""
overlay = frame.copy()
mask = binary_mask.astype(np.uint8) * 255
contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cv2.drawContours(overlay, contours, -1, color, thickness=cv2.FILLED)
return cv2.addWeighted(overlay, alpha, frame, 1 - alpha, 0)
# ── A* and KNN over binary water grid ─────────────────────────────────
def astar(start, goal, occ):
h = lambda a,b: abs(a[0]-b[0])+abs(a[1]-b[1])
N8 = [(-1,-1),(-1,0),(-1,1),(0,-1),(0,1),(1,-1),(1,0),(1,1)]
openq=[(0,start)]; g={start:0}; came={}
while openq:
_,cur=heapq.heappop(openq)
if cur==goal:
p=[cur]; # reconstruct
while cur in came: cur=came[cur]; p.append(cur)
return p[::-1]
for dx,dy in N8:
nx,ny=cur[0]+dx,cur[1]+dy
if not (0<=nx<640 and 0<=ny<640): continue
if occ[ny,nx]==0: continue
ng=g[cur]+1
if (nx,ny) not in g or ng<g[(nx,ny)]:
g[(nx,ny)]=ng
f=ng+h((nx,ny),goal)
heapq.heappush(openq,(f,(nx,ny)))
came[(nx,ny)]=cur
return []
# KNN fit
def knn_path(start, targets, occ):
todo = targets[:]; path=[]
cur = tuple(start)
while todo:
nbrs = NearestNeighbors(n_neighbors=1).fit(todo)
_,idx = nbrs.kneighbors([cur]); nxt=tuple(todo[idx[0][0]])
seg = astar(cur, nxt, occ)
if seg:
if path and seg[0]==path[-1]: seg=seg[1:]
path.extend(seg)
cur = nxt; todo.remove(list(nxt))
return path
# ── Robot sprite/class -──────────────────────────────────────────────────
class Robot:
def __init__(self, sprite, speed=2000): # Declare the robot's physical stats and routing (position, speed, movement, path)
img = Image.open(sprite).convert("RGBA").resize((40, 40))
self.png = np.array(img)
if self.png.shape[-1] != 4:
raise ValueError("Sprite image must have 4 channels (RGBA)")
self.png = np.array(Image.open(sprite).convert("RGBA").resize((40,40)))
self.pos = [20,20]; self.speed=speed
def step(self, path):
while path:
dx, dy = path[0][0] - self.pos[0], path[0][1] - self.pos[1]
dist = (dx * dx + dy * dy) ** 0.5
if dist <= self.speed:
self.pos = list(path.pop(0))
else:
r = self.speed / dist
self.pos = [int(self.pos[0] + dx * r), int(self.pos[1] + dy * r)]
# Break after one logical move to avoid overshooting
break
# ── FastAPI & HTML content (original styling) ───────────────────────────
# HTML Content for UI (streamed with FastAPI HTML renderer)
HTML_CONTENT = """
<!DOCTYPE html>
<html>
<head>
<title>Sall-e Garbage Detection</title>
<link rel="website icon" type="png" href="/static/icon.png" >
<style>
body {
font-family: 'Roboto', sans-serif; background: linear-gradient(270deg, rgb(44, 13, 58), rgb(13, 58, 56)); color: white; text-align: center; margin: 0; padding: 50px;
}
h1 {
font-size: 40px;
background: linear-gradient(to right, #f32170, #ff6b08, #cf23cf, #eedd44);
-webkit-text-fill-color: transparent;
-webkit-background-clip: text;
font-weight: bold;
}
#upload-container {
background: rgba(255, 255, 255, 0.2); padding: 20px; width: 70%; border-radius: 10px; display: inline-block; box-shadow: 0px 0px 10px rgba(255, 255, 255, 0.3);
}
#upload {
font-size: 18px; padding: 10px; border-radius: 5px; border: none; background: #fff; cursor: pointer;
}
#loader {
margin-top: 10px; margin-left: auto; margin-right: auto; width: 60px; height: 60px; font-size: 12px; text-align: center;
}
p {
margin-top: 10px; font-size: 12px; color: #3498db;
}
#spinner {
border: 8px solid #f3f3f3; border-top: 8px solid rgb(117 7 7); border-radius: 50%; animation: spin 1s linear infinite; width: 40px; height: 40px; margin: auto;
}
@keyframes spin {
0% { transform: rotate(0deg); }
100% { transform: rotate(360deg); }
}
#outputVideo {
margin-top: 20px; width: 70%; margin-left: auto; margin-right: auto; max-width: 640px; border-radius: 10px; box-shadow: 0px 0px 10px rgba(255, 255, 255, 0.3);
}
#downloadBtn {
display: block; visibility: hidden; width: 20%; margin-top: 20px; margin-left: auto; margin-right: auto; padding: 10px 15px; font-size: 16px; background: #27ae60; color: white; border: none; border-radius: 5px; cursor: pointer; text-decoration: none;
}
#downloadBtn:hover {
background: #950606;
}
.hidden {
display: none;
}
@media (max-width: 860px) {
h1 { font-size: 30px; }
}
@media (max-width: 720px) {
h1 { font-size: 25px; }
#upload { font-size: 15px; }
#downloadBtn { font-size: 13px; }
}
@media (max-width: 580px) {
h1 { font-size: 20px; }
#upload { font-size: 10px; }
#downloadBtn { font-size: 10px; }
}
@media (max-width: 580px) {
h1 { font-size: 10px; }
}
@media (max-width: 460px) {
#upload { font-size: 7px; }
}
@media (max-width: 400px) {
h1 { font-size: 14px; }
}
@media (max-width: 370px) {
h1 { font-size: 11px; }
#upload { font-size: 5px; }
#downloadBtn { font-size: 7px; }
}
@media (max-width: 330px) {
h1 { font-size: 8px; }
#upload { font-size: 3px; }
#downloadBtn { font-size: 5px; }
}
</style>
</head>
<body>
<h1>Upload an Image for Garbage Detection</h1>
<div id="upload-container">
<input type="file" id="upload" accept="image/*">
</div>
<div id="loader" class="loader hidden">
<div id="spinner"></div>
<!-- <p>Garbage detection model processing...</p> -->
</div>
<video id="outputVideo" class="outputVideo" controls></video>
<a id="downloadBtn" class="downloadBtn">Download Video</a>
<script>
document.addEventListener("DOMContentLoaded", function() {
document.getElementById("outputVideo").classList.add("hidden");
document.getElementById("downloadBtn").style.visibility = "hidden";
});
document.getElementById('upload').addEventListener('change', async function(event) {
event.preventDefault();
const loader = document.getElementById("loader");
const outputVideo = document.getElementById("outputVideo");
const downloadBtn = document.getElementById("downloadBtn");
let file = event.target.files[0];
if (file) {
let formData = new FormData();
formData.append("file", file);
loader.classList.remove("hidden");
outputVideo.classList.add("hidden");
document.getElementById("downloadBtn").style.visibility = "hidden";
let response = await fetch('/upload/', { method: 'POST', body: formData });
let result = await response.json();
let user_id = result.user_id;
while (true) {
let checkResponse = await fetch(`/check_video/${user_id}`);
let checkResult = await checkResponse.json();
if (checkResult.ready) break;
await new Promise(resolve => setTimeout(resolve, 3000)); // Wait 3s before checking again
}
loader.classList.add("hidden");
let videoUrl = `/video/${user_id}?t=${new Date().getTime()}`;
outputVideo.src = videoUrl;
outputVideo.load();
outputVideo.play();
outputVideo.setAttribute("crossOrigin", "anonymous");
outputVideo.classList.remove("hidden");
downloadBtn.href = videoUrl;
document.getElementById("downloadBtn").style.visibility = "visible";
}
});
document.getElementById('outputVideo').addEventListener('error', function() {
console.log("⚠️ Video could not be played, showing download button instead.");
document.getElementById('outputVideo').classList.add("hidden");
document.getElementById("downloadBtn").style.visibility = "visible";
});
</script>
</body>
</html>
"""
# ── Static-web ──────────────────────────────────────────────────────────
app = FastAPI()
app.mount("/static", StaticFiles(directory=BASE), name="static")
video_ready={}
@app.get("/ui", response_class=HTMLResponse)
def ui(): return HTML_CONTENT
def _uid(): return uuid.uuid4().hex[:8]
# ── End-points ──────────────────────────────────────────────────────────
# User upload environment img here
@app.post("/upload/")
async def upload(file:UploadFile=File(...)):
uid=_uid(); dest=f"{UPLOAD_DIR}/{uid}_{file.filename}"
with open(dest,"wb") as bf: shutil.copyfileobj(file.file,bf)
threading.Thread(target=_pipeline, args=(uid,dest)).start()
return {"user_id":uid}
# Health check, make sure the video generator is alive and debug which video id is processed (multiple video can be processed at 1 worker)
@app.get("/check_video/{uid}")
def chk(uid:str): return {"ready":video_ready.get(uid,False)}
# Where the final video being saved
@app.get("/video/{uid}")
def stream(uid:str):
vid=f"{OUTPUT_DIR}/{uid}.mp4"
if not os.path.exists(vid): return Response(status_code=404)
return StreamingResponse(open(vid,"rb"), media_type="video/mp4")
# ── Core pipeline (runs in background thread) ───────────────────────────
def _pipeline(uid,img_path):
print(f"▶️ [{uid}] processing")
bgr=cv2.resize(cv2.imread(img_path),(640,640)); rgb=cv2.cvtColor(bgr,cv2.COLOR_BGR2RGB)
pil=Image.fromarray(rgb)
# 1- Segmentation → masking each segmented zone with pytorch
with torch.no_grad():
inputs = feat_extractor(pil, return_tensors="pt")
seg_logits = segformer(**inputs).logits
# Tensor run by CPU
seg_tensor = seg_logits.argmax(1)[0].cpu()
if seg_tensor.numel() == 0:
print(f"❌ [{uid}] segmentation failed (empty tensor)")
video_ready[uid] = True
return
# Resize the tensor to 640x640
seg = cv2.resize(seg_tensor.numpy(), (640, 640), interpolation=cv2.INTER_NEAREST)
print(f"🧪 [{uid}] segmentation input shape: {inputs['pixel_values'].shape}")
water_mask, garbage_mask, movable_mask = build_masks(seg) # movable zone = water and garbage masks
# 2- Garbage detection (3 models) → keep centres on water
detections=[]
# Detect garbage chunks (from segmentation)
num_cc, labels = cv2.connectedComponents(garbage_mask.astype(np.uint8))
chunk_centres = []
for lab in range(1, num_cc):
ys, xs = np.where(labels == lab)
if xs.size == 0: # safety
continue
chunk_centres.append([int(xs.mean()), int(ys.mean())])
print(f"🧠 {len(chunk_centres)} garbage chunk detected")
# Detect garbage object by within travelable zones
for r in model_self(bgr): # YOLOv11 (self-trained)
detections += [b.xyxy[0].tolist() for b in r.boxes]
r = model_yolo5(bgr) # YOLOv5
if hasattr(r, 'pred') and len(r.pred) > 0:
detections += [p[:4].tolist() for p in r.pred[0]]
inp=processor_detr(images=pil,return_tensors="pt")
with torch.no_grad(): out=model_detr(**inp) # DETR
post = processor_detr.post_process_object_detection(
outputs=out,
target_sizes=torch.tensor([pil.size[::-1]]),
threshold=0.5
)[0]
detections += [b.tolist() for b in post["boxes"]]
# centre & mask filter (the garbage lies within travelable zone are collectable)
centres = []
for x1, y1, x2, y2 in detections: # Define IoU heuristic
'''
We conduct a 20% allowance whether the center
of the detected garbage's bbox lies within the travelable zone
which was segmented earlier to be the water and garbage zone
'''
x1, y1, x2, y2 = map(int, [x1, y1, x2, y2])
x1 = max(0, min(x1, 639)); y1 = max(0, min(y1, 639))
x2 = max(0, min(x2, 639)); y2 = max(0, min(y2, 639))
box_mask = movable_mask[y1:y2, x1:x2] # ← use MOVABLE mask
if box_mask.size == 0:
continue
if np.count_nonzero(box_mask) / box_mask.size >= 0.2:
centres.append([int((x1 + x2) / 2), int((y1 + y2) / 2)])
# add chunk centres and deduplicate
centres.extend(chunk_centres)
centres = [list(c) for c in {tuple(c) for c in centres}]
if not centres: # No garbages within travelable zone
print(f"🛑 [{uid}] no reachable garbage"); video_ready[uid]=True; return
else: # Garbage within valid travelable zone
print(f"🧠 {len(centres)} garbage objects on water selected from {len(detections)} detections")
# 3- Global route
robot = Robot(SPRITE)
path = knn_path(robot.pos, centres, movable_mask)
# 4- Video synthesis
out_tmp=f"{OUTPUT_DIR}/{uid}_tmp.mp4"
vw=cv2.VideoWriter(out_tmp,cv2.VideoWriter_fourcc(*"mp4v"),10.0,(640,640))
objs=[{"pos":p,"col":False} for p in centres]
bg = bgr.copy()
for _ in range(15000): # safety frames
frame=bg.copy()
# Draw garbage chunk masks in red-to-green (semi-transparent)
frame = highlight_chunk_masks_on_frame(frame, labels, objs) # 🔴 garbage overlay
frame = highlight_water_mask_on_frame(frame, water_mask) # 🔵 water overlay
# Draw object detections as red (to green) dots
for o in objs:
color = (0, 0, 128) if not o["col"] else (0, 128, 0)
x, y = o["pos"]
cv2.circle(frame, (x, y), 6, color, -1)
# Robot displacement
robot.step(path)
sp = robot.png
sprite_h, sprite_w = sp.shape[:2]
rx, ry = robot.pos
x1, y1 = rx - sprite_w // 2, ry - sprite_h // 2
x2, y2 = x1 + sprite_w, y1 + sprite_h
# Clip boundaries to image size
x1_clip, x2_clip = max(0, x1), min(frame.shape[1], x2)
y1_clip, y2_clip = max(0, y1), min(frame.shape[0], y2)
# Adjust sprite crop accordingly
sx1, sy1 = x1_clip - x1, y1_clip - y1
sx2, sy2 = sprite_w - (x2 - x2_clip), sprite_h - (y2 - y2_clip)
sprite_crop = sp[sy1:sy2, sx1:sx2]
alpha = sprite_crop[:, :, 3] / 255.0
alpha = np.stack([alpha] * 3, axis=-1)
bgroi = frame[y1_clip:y2_clip, x1_clip:x2_clip]
blended = (alpha * sprite_crop[:, :, :3] + (1 - alpha) * bgroi).astype(np.uint8)
frame[y1_clip:y2_clip, x1_clip:x2_clip] = blended
# collection check
for o in objs:
if not o["col"] and np.hypot(o["pos"][0]-robot.pos[0], o["pos"][1]-robot.pos[1]) <= 20:
o["col"]=True
vw.write(frame)
if all(o["col"] for o in objs): break
if not path: break
vw.release()
# 5- Convert to H.264
final=f"{OUTPUT_DIR}/{uid}.mp4"
ffmpeg.input(out_tmp).output(final,vcodec="libx264",pix_fmt="yuv420p").run(overwrite_output=True,quiet=True)
os.remove(out_tmp); video_ready[uid]=True
print(f"✅ [{uid}] video ready → {final}")
# ── Run locally (HF Space ignores since built with Docker image) ────────
if __name__=="__main__":
uvicorn.run(app,host="0.0.0.0",port=7860)
|