File size: 179,252 Bytes
7101bb5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
#! /usr/bin/python3

###################################################################################

###################################################################################
#
#
#	Tegridy MIDI Module (TMIDI / tee-midi)
#	Version 2.3
#
#       NOTE: TMIDI Module starts after MIDI.py module @ line 1780
#
#	Based upon and includes the amazing MIDI.py module v.6.7. by Peter Billam
#	pjb.com.au
#
#	Project Los Angeles
#
#	Tegridy Code 2021
#
#       https://github.com/Tegridy-Code/Project-Los-Angeles
#
#
###################################################################################
#       Copyright 2021 Project Los Angeles / Tegridy Code
#
#       Licensed under the Apache License, Version 2.0 (the "License");
#       you may not use this file except in compliance with the License.
#       You may obtain a copy of the License at
#
#           http://www.apache.org/licenses/LICENSE-2.0
#
#       Unless required by applicable law or agreed to in writing, software
#       distributed under the License is distributed on an "AS IS" BASIS,
#       WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#       See the License for the specific language governing permissions and
#       limitations under the License.
###################################################################################
#
#	MIDI.py Module v.6.7. by Peter Billam
#
#	https://pjb.com.au/
#	
#	Copyright 2020 Peter Billam
#
###################################################################################

###################################################################################

# unsupported 20091104 ...
#     ['set_sequence_number', dtime, sequence]
#     ['raw_data', dtime, raw]

# 20150914   jimbo1qaz   MIDI.py str/bytes bug report
# I found a MIDI file which had Shift-JIS titles. When midi.py decodes it as
# latin-1, it produces a string which cannot even be accessed without raising
# a UnicodeDecodeError.  Maybe, when converting raw byte strings from MIDI,
# you should keep them as bytes, not improperly decode them.  However, this
# would change the API.  (ie: text = a "string" ? of 0 or more bytes).  It
# could break compatiblity, but there's not much else you can do to fix the bug
# https://en.wikipedia.org/wiki/Shift_JIS

r'''
This module offers functions:  concatenate_scores(), grep(),
merge_scores(), mix_scores(), midi2opus(), midi2score(), opus2midi(),
opus2score(), play_score(), score2midi(), score2opus(), score2stats(),
score_type(), segment(), timeshift() and to_millisecs(),
where "midi" means the MIDI-file bytes (as can be put in a .mid file,
or piped into aplaymidi), and "opus" and "score" are list-structures
as inspired by Sean Burke's MIDI-Perl CPAN module.

Warning: Version 6.4 is not necessarily backward-compatible with
previous versions, in that text-data is now bytes, not strings.
This reflects the fact that many MIDI files have text data in
encodings other that ISO-8859-1, for example in Shift-JIS.

Download MIDI.py from   http://www.pjb.com.au/midi/free/MIDI.py
and put it in your PYTHONPATH.  MIDI.py depends on Python3.

There is also a call-compatible translation into Lua of this
module: see http://www.pjb.com.au/comp/lua/MIDI.html

The "opus" is a direct translation of the midi-file-events, where
the times are delta-times, in ticks, since the previous event.

The "score" is more human-centric; it uses absolute times, and
combines the separate note_on and note_off events into one "note"
event, with a duration:
 ['note', start_time, duration, channel, note, velocity] # in a "score"

  EVENTS (in an "opus" structure)
     ['note_off', dtime, channel, note, velocity]       # in an "opus"
     ['note_on', dtime, channel, note, velocity]        # in an "opus"
     ['key_after_touch', dtime, channel, note, velocity]
     ['control_change', dtime, channel, controller(0-127), value(0-127)]
     ['patch_change', dtime, channel, patch]
     ['channel_after_touch', dtime, channel, velocity]
     ['pitch_wheel_change', dtime, channel, pitch_wheel]
     ['text_event', dtime, text]
     ['copyright_text_event', dtime, text]
     ['track_name', dtime, text]
     ['instrument_name', dtime, text]
     ['lyric', dtime, text]
     ['marker', dtime, text]
     ['cue_point', dtime, text]
     ['text_event_08', dtime, text]
     ['text_event_09', dtime, text]
     ['text_event_0a', dtime, text]
     ['text_event_0b', dtime, text]
     ['text_event_0c', dtime, text]
     ['text_event_0d', dtime, text]
     ['text_event_0e', dtime, text]
     ['text_event_0f', dtime, text]
     ['end_track', dtime]
     ['set_tempo', dtime, tempo]
     ['smpte_offset', dtime, hr, mn, se, fr, ff]
     ['time_signature', dtime, nn, dd, cc, bb]
     ['key_signature', dtime, sf, mi]
     ['sequencer_specific', dtime, raw]
     ['raw_meta_event', dtime, command(0-255), raw]
     ['sysex_f0', dtime, raw]
     ['sysex_f7', dtime, raw]
     ['song_position', dtime, song_pos]
     ['song_select', dtime, song_number]
     ['tune_request', dtime]

  DATA TYPES
     channel = a value 0 to 15
     controller = 0 to 127 (see http://www.pjb.com.au/muscript/gm.html#cc )
     dtime = time measured in "ticks", 0 to 268435455
     velocity = a value 0 (soft) to 127 (loud)
     note = a value 0 to 127  (middle-C is 60)
     patch = 0 to 127 (see http://www.pjb.com.au/muscript/gm.html )
     pitch_wheel = a value -8192 to 8191 (0x1FFF)
     raw = bytes, of length 0 or more  (for sysex events see below)
     sequence_number = a value 0 to 65,535 (0xFFFF)
     song_pos = a value 0 to 16,383 (0x3FFF)
     song_number = a value 0 to 127
     tempo = microseconds per crochet (quarter-note), 0 to 16777215
     text = bytes, of length 0 or more
     ticks = the number of ticks per crochet (quarter-note)

   In sysex_f0 events, the raw data must not start with a \xF0 byte,
   since this gets added automatically;
   but it must end with an explicit \xF7 byte!
   In the very unlikely case that you ever need to split sysex data
   into one sysex_f0 followed by one or more sysex_f7s, then only the
   last of those sysex_f7 events must end with the explicit \xF7 byte
   (again, the raw data of individual sysex_f7 events must not start
   with any \xF7 byte, since this gets added automatically).

   Since version 6.4, text data is in bytes, not in a ISO-8859-1 string.


  GOING THROUGH A SCORE WITHIN A PYTHON PROGRAM
    channels = {2,3,5,8,13}
    itrack = 1   # skip 1st element which is ticks
    while itrack < len(score):
        for event in score[itrack]:
            if event[0] == 'note':   # for example,
                pass  # do something to all notes
            # or, to work on events in only particular channels...
            channel_index = MIDI.Event2channelindex.get(event[0], False)
            if channel_index and (event[channel_index] in channels):
                pass  # do something to channels 2,3,5,8 and 13
        itrack += 1

'''

import sys, struct, copy
# sys.stdout = os.fdopen(sys.stdout.fileno(), 'wb')
Version = '6.7'
VersionDate = '20201120'
# 20201120 6.7 call to bytest() removed, and protect _unshift_ber_int
# 20160702 6.6 to_millisecs() now handles set_tempo across multiple Tracks
# 20150921 6.5 segment restores controllers as well as patch and tempo
# 20150914 6.4 text data is bytes or bytearray, not ISO-8859-1 strings
# 20150628 6.3 absent any set_tempo, default is 120bpm (see MIDI file spec 1.1)
# 20150101 6.2 all text events can be 8-bit; let user get the right encoding
# 20141231 6.1 fix _some_text_event; sequencer_specific data can be 8-bit
# 20141230 6.0 synth_specific data can be 8-bit
# 20120504 5.9 add the contents of mid_opus_tracks()
# 20120208 5.8 fix num_notes_by_channel() ; should be a dict
# 20120129 5.7 _encode handles empty tracks; score2stats num_notes_by_channel
# 20111111 5.6 fix patch 45 and 46 in Number2patch, should be Harp
# 20110129 5.5 add mix_opus_tracks() and event2alsaseq()
# 20110126 5.4 "previous message repeated N times" to save space on stderr
# 20110125 5.2 opus2score terminates unended notes at the end of the track
# 20110124 5.1 the warnings in midi2opus display track_num
# 21110122 5.0 if garbage, midi2opus returns the opus so far
# 21110119 4.9 non-ascii chars stripped out of the text_events
# 21110110 4.8 note_on with velocity=0 treated as a note-off
# 21110108 4.6 unknown F-series event correctly eats just one byte
# 21011010 4.2 segment() uses start_time, end_time named params
# 21011005 4.1 timeshift() must not pad the set_tempo command
# 21011003 4.0 pitch2note_event must be chapitch2note_event
# 21010918 3.9 set_sequence_number supported, FWIW
# 20100913 3.7 many small bugfixes; passes all tests
# 20100910 3.6 concatenate_scores enforce ticks=1000, just like merge_scores
# 20100908 3.5 minor bugs fixed in score2stats
# 20091104 3.4 tune_request now supported
# 20091104 3.3 fixed bug in decoding song_position and song_select
# 20091104 3.2 unsupported: set_sequence_number tune_request raw_data
# 20091101 3.1 document how to traverse a score within Python
# 20091021 3.0 fixed bug in score2stats detecting GM-mode = 0
# 20091020 2.9 score2stats reports GM-mode and bank msb,lsb events
# 20091019 2.8 in merge_scores, channel 9 must remain channel 9 (in GM)
# 20091018 2.7 handles empty tracks gracefully
# 20091015 2.6 grep() selects channels
# 20091010 2.5 merge_scores reassigns channels to avoid conflicts
# 20091010 2.4 fixed bug in to_millisecs which now only does opusses
# 20091010 2.3 score2stats returns channels & patch_changes, by_track & total
# 20091010 2.2 score2stats() returns also pitches and percussion dicts
# 20091010 2.1 bugs: >= not > in segment, to notice patch_change at time 0
# 20091010 2.0 bugs: spurious pop(0) ( in _decode sysex
# 20091008 1.9 bugs: ISO decoding in sysex; str( not int( in note-off warning
# 20091008 1.8 add concatenate_scores()
# 20091006 1.7 score2stats() measures nticks and ticks_per_quarter
# 20091004 1.6 first mix_scores() and merge_scores()
# 20090424 1.5 timeshift() bugfix: earliest only sees events after from_time
# 20090330 1.4 timeshift() has also a from_time argument
# 20090322 1.3 timeshift() has also a start_time argument
# 20090319 1.2 add segment() and timeshift()
# 20090301 1.1 add to_millisecs()

_previous_warning = ''  # 5.4
_previous_times = 0     # 5.4
#------------------------------- Encoding stuff --------------------------

def opus2midi(opus=[], text_encoding='ISO-8859-1'):
    r'''The argument is a list: the first item in the list is the "ticks"
parameter, the others are the tracks. Each track is a list
of midi-events, and each event is itself a list; see above.
opus2midi() returns a bytestring of the MIDI, which can then be
written either to a file opened in binary mode (mode='wb'),
or to stdout by means of:   sys.stdout.buffer.write()

my_opus = [
    96, 
    [   # track 0:
        ['patch_change', 0, 1, 8],   # and these are the events...
        ['note_on',   5, 1, 25, 96],
        ['note_off', 96, 1, 25, 0],
        ['note_on',   0, 1, 29, 96],
        ['note_off', 96, 1, 29, 0],
    ],   # end of track 0
]
my_midi = opus2midi(my_opus)
sys.stdout.buffer.write(my_midi)
'''
    if len(opus) < 2:
        opus=[1000, [],]
    tracks = copy.deepcopy(opus)
    ticks = int(tracks.pop(0))
    ntracks = len(tracks)
    if ntracks == 1:
        format = 0
    else:
        format = 1

    my_midi = b"MThd\x00\x00\x00\x06"+struct.pack('>HHH',format,ntracks,ticks)
    for track in tracks:
        events = _encode(track, text_encoding=text_encoding)
        my_midi += b'MTrk' + struct.pack('>I',len(events)) + events
    _clean_up_warnings()
    return my_midi


def score2opus(score=None, text_encoding='ISO-8859-1'):
    r'''
The argument is a list: the first item in the list is the "ticks"
parameter, the others are the tracks. Each track is a list
of score-events, and each event is itself a list.  A score-event
is similar to an opus-event (see above), except that in a score:
 1) the times are expressed as an absolute number of ticks
    from the track's start time
 2) the pairs of 'note_on' and 'note_off' events in an "opus"
    are abstracted into a single 'note' event in a "score":
    ['note', start_time, duration, channel, pitch, velocity]
score2opus() returns a list specifying the equivalent "opus".

my_score = [
    96,
    [   # track 0:
        ['patch_change', 0, 1, 8],
        ['note', 5, 96, 1, 25, 96],
        ['note', 101, 96, 1, 29, 96]
    ],   # end of track 0
]
my_opus = score2opus(my_score)
'''
    if len(score) < 2:
        score=[1000, [],]
    tracks = copy.deepcopy(score)
    ticks = int(tracks.pop(0))
    opus_tracks = []
    for scoretrack in tracks:
        time2events = dict([])
        for scoreevent in scoretrack:
            if scoreevent[0] == 'note':
                note_on_event = ['note_on',scoreevent[1],
                 scoreevent[3],scoreevent[4],scoreevent[5]]
                note_off_event = ['note_off',scoreevent[1]+scoreevent[2],
                 scoreevent[3],scoreevent[4],scoreevent[5]]
                if time2events.get(note_on_event[1]):
                   time2events[note_on_event[1]].append(note_on_event)
                else:
                   time2events[note_on_event[1]] = [note_on_event,]
                if time2events.get(note_off_event[1]):
                   time2events[note_off_event[1]].append(note_off_event)
                else:
                   time2events[note_off_event[1]] = [note_off_event,]
                continue
            if time2events.get(scoreevent[1]):
               time2events[scoreevent[1]].append(scoreevent)
            else:
               time2events[scoreevent[1]] = [scoreevent,]

        sorted_times = []  # list of keys
        for k in time2events.keys():
            sorted_times.append(k)
        sorted_times.sort()

        sorted_events = []  # once-flattened list of values sorted by key
        for time in sorted_times:
            sorted_events.extend(time2events[time])

        abs_time = 0
        for event in sorted_events:  # convert abs times => delta times
            delta_time = event[1] - abs_time
            abs_time = event[1]
            event[1] = delta_time
        opus_tracks.append(sorted_events)
    opus_tracks.insert(0,ticks)
    _clean_up_warnings()
    return opus_tracks

def score2midi(score=None, text_encoding='ISO-8859-1'):
    r'''
Translates a "score" into MIDI, using score2opus() then opus2midi()
'''
    return opus2midi(score2opus(score, text_encoding), text_encoding)

#--------------------------- Decoding stuff ------------------------

def midi2opus(midi=b''):
    r'''Translates MIDI into a "opus".  For a description of the
"opus" format, see opus2midi()
'''
    my_midi=bytearray(midi)
    if len(my_midi) < 4:
        _clean_up_warnings()
        return [1000,[],]
    id = bytes(my_midi[0:4])
    if id != b'MThd':
        _warn("midi2opus: midi starts with "+str(id)+" instead of 'MThd'")
        _clean_up_warnings()
        return [1000,[],]
    [length, format, tracks_expected, ticks] = struct.unpack(
     '>IHHH', bytes(my_midi[4:14]))
    if length != 6:
        _warn("midi2opus: midi header length was "+str(length)+" instead of 6")
        _clean_up_warnings()
        return [1000,[],]
    my_opus = [ticks,]
    my_midi = my_midi[14:]
    track_num = 1   # 5.1
    while len(my_midi) >= 8:
        track_type   = bytes(my_midi[0:4])
        if track_type != b'MTrk':
            #_warn('midi2opus: Warning: track #'+str(track_num)+' type is '+str(track_type)+" instead of b'MTrk'")
            pass
        [track_length] = struct.unpack('>I', my_midi[4:8])
        my_midi = my_midi[8:]
        if track_length > len(my_midi):
            _warn('midi2opus: track #'+str(track_num)+' length '+str(track_length)+' is too large')
            _clean_up_warnings()
            return my_opus   # 5.0
        my_midi_track = my_midi[0:track_length]
        my_track = _decode(my_midi_track)
        my_opus.append(my_track)
        my_midi = my_midi[track_length:]
        track_num += 1   # 5.1
    _clean_up_warnings()
    return my_opus

def opus2score(opus=[]):
    r'''For a description of the "opus" and "score" formats,
see opus2midi() and score2opus().
'''
    if len(opus) < 2:
        _clean_up_warnings()
        return [1000,[],]
    tracks = copy.deepcopy(opus)  # couple of slices probably quicker...
    ticks = int(tracks.pop(0))
    score = [ticks,]
    for opus_track in tracks:
        ticks_so_far = 0
        score_track = []
        chapitch2note_on_events = dict([])   # 4.0
        for opus_event in opus_track:
            ticks_so_far += opus_event[1]
            if opus_event[0] == 'note_off' or (opus_event[0] == 'note_on' and opus_event[4] == 0):  # 4.8
                cha = opus_event[2]
                pitch = opus_event[3]
                key = cha*128 + pitch
                if chapitch2note_on_events.get(key):
                    new_event = chapitch2note_on_events[key].pop(0)
                    new_event[2] = ticks_so_far - new_event[1]
                    score_track.append(new_event)
                elif pitch > 127:
                    pass #_warn('opus2score: note_off with no note_on, bad pitch='+str(pitch))
                else:
                    pass #_warn('opus2score: note_off with no note_on cha='+str(cha)+' pitch='+str(pitch))
            elif opus_event[0] == 'note_on':
                cha = opus_event[2]
                pitch = opus_event[3]
                key = cha*128 + pitch
                new_event = ['note',ticks_so_far,0,cha,pitch, opus_event[4]]
                if chapitch2note_on_events.get(key):
                    chapitch2note_on_events[key].append(new_event)
                else:
                    chapitch2note_on_events[key] = [new_event,]
            else:
                opus_event[1] = ticks_so_far
                score_track.append(opus_event)
        # check for unterminated notes (Oisín) -- 5.2
        for chapitch in chapitch2note_on_events:
            note_on_events = chapitch2note_on_events[chapitch]
            for new_e in note_on_events:
                new_e[2] = ticks_so_far - new_e[1]
                score_track.append(new_e)
                pass #_warn("opus2score: note_on with no note_off cha="+str(new_e[3])+' pitch='+str(new_e[4])+'; adding note_off at end')
        score.append(score_track)
    _clean_up_warnings()
    return score

def midi2score(midi=b''):
    r'''
Translates MIDI into a "score", using midi2opus() then opus2score()
'''
    return opus2score(midi2opus(midi))

def midi2ms_score(midi=b''):
    r'''
Translates MIDI into a "score" with one beat per second and one
tick per millisecond, using midi2opus() then to_millisecs()
then opus2score()
'''
    return opus2score(to_millisecs(midi2opus(midi)))

#------------------------ Other Transformations ---------------------

def to_millisecs(old_opus=None, desired_time_in_ms=1):
    r'''Recallibrates all the times in an "opus" to use one beat
per second and one tick per millisecond.  This makes it
hard to retrieve any information about beats or barlines,
but it does make it easy to mix different scores together.
'''
    if old_opus == None:
        return [1000 * desired_time_in_ms,[],]
    try:
        old_tpq  = int(old_opus[0])
    except IndexError:   # 5.0
        _warn('to_millisecs: the opus '+str(type(old_opus))+' has no elements')
        return [1000 * desired_time_in_ms,[],]
    new_opus = [1000 * desired_time_in_ms,]
    # 6.7 first go through building a table of set_tempos by absolute-tick
    ticks2tempo = {}
    itrack = 1
    while itrack < len(old_opus):
        ticks_so_far = 0
        for old_event in old_opus[itrack]:
            if old_event[0] == 'note':
                raise TypeError('to_millisecs needs an opus, not a score')
            ticks_so_far += old_event[1]
            if old_event[0] == 'set_tempo':
                ticks2tempo[ticks_so_far] = old_event[2]
        itrack += 1
    # then get the sorted-array of their keys
    tempo_ticks = []  # list of keys
    for k in ticks2tempo.keys():
        tempo_ticks.append(k)
    tempo_ticks.sort()
    # then go through converting to millisec, testing if the next
    # set_tempo lies before the next track-event, and using it if so.
    itrack = 1
    while itrack < len(old_opus):
        ms_per_old_tick = 400 / old_tpq  # float: will round later 6.3
        i_tempo_ticks = 0
        ticks_so_far = 0
        ms_so_far = 0.0
        previous_ms_so_far = 0.0
        new_track = [['set_tempo',0,1000000 * desired_time_in_ms],]  # new "crochet" is 1 sec
        for old_event in old_opus[itrack]:
            # detect if ticks2tempo has something before this event
            # 20160702 if ticks2tempo is at the same time, leave it
            event_delta_ticks = old_event[1] * desired_time_in_ms
            if (i_tempo_ticks < len(tempo_ticks) and
              tempo_ticks[i_tempo_ticks] < (ticks_so_far + old_event[1]) * desired_time_in_ms):
                delta_ticks = tempo_ticks[i_tempo_ticks] - ticks_so_far
                ms_so_far += (ms_per_old_tick * delta_ticks * desired_time_in_ms)
                ticks_so_far = tempo_ticks[i_tempo_ticks]
                ms_per_old_tick = ticks2tempo[ticks_so_far] / (1000.0*old_tpq * desired_time_in_ms)
                i_tempo_ticks += 1
                event_delta_ticks -= delta_ticks
            new_event = copy.deepcopy(old_event)  # now handle the new event
            ms_so_far += (ms_per_old_tick * old_event[1] * desired_time_in_ms)
            new_event[1] = round(ms_so_far - previous_ms_so_far)
            if old_event[0] != 'set_tempo':
                previous_ms_so_far = ms_so_far
                new_track.append(new_event)
            ticks_so_far += event_delta_ticks
        new_opus.append(new_track)
        itrack += 1
    _clean_up_warnings()
    return new_opus

def event2alsaseq(event=None):   # 5.5
    r'''Converts an event into the format needed by the alsaseq module,
http://pp.com.mx/python/alsaseq
The type of track (opus or score) is autodetected.
'''
    pass

def grep(score=None, channels=None):
    r'''Returns a "score" containing only the channels specified
'''
    if score == None:
        return [1000,[],]
    ticks = score[0]
    new_score = [ticks,]
    if channels == None:
        return new_score
    channels = set(channels)
    global Event2channelindex
    itrack = 1
    while itrack < len(score):
        new_score.append([])
        for event in score[itrack]:
            channel_index = Event2channelindex.get(event[0], False)
            if channel_index:
                if event[channel_index] in channels:
                    new_score[itrack].append(event)
            else:
                new_score[itrack].append(event)
        itrack += 1
    return new_score

def play_score(score=None):
    r'''Converts the "score" to midi, and feeds it into 'aplaymidi -'
'''
    if score == None:
        return
    import subprocess
    pipe = subprocess.Popen(['aplaymidi','-'], stdin=subprocess.PIPE)
    if score_type(score) == 'opus':
        pipe.stdin.write(opus2midi(score))
    else:
        pipe.stdin.write(score2midi(score))
    pipe.stdin.close()

def timeshift(score=None, shift=None, start_time=None, from_time=0, tracks={0,1,2,3,4,5,6,7,8,10,12,13,14,15}):
    r'''Returns a "score" shifted in time by "shift" ticks, or shifted
so that the first event starts at "start_time" ticks.

If "from_time" is specified, only those events in the score
that begin after it are shifted. If "start_time" is less than
"from_time" (or "shift" is negative), then the intermediate
notes are deleted, though patch-change events are preserved.

If "tracks" are specified, then only those tracks get shifted.
"tracks" can be a list, tuple or set; it gets converted to set
internally.

It is deprecated to specify both "shift" and "start_time".
If this does happen, timeshift() will print a warning to
stderr and ignore the "shift" argument.

If "shift" is negative and sufficiently large that it would
leave some event with a negative tick-value, then the score
is shifted so that the first event occurs at time 0. This
also occurs if "start_time" is negative, and is also the
default if neither "shift" nor "start_time" are specified.
'''
    #_warn('tracks='+str(tracks))
    if score == None or len(score) < 2:
        return [1000, [],]
    new_score = [score[0],]
    my_type = score_type(score)
    if my_type == '':
        return new_score
    if my_type == 'opus':
        _warn("timeshift: opus format is not supported\n")
        # _clean_up_scores()  6.2; doesn't exist! what was it supposed to do?
        return new_score
    if not (shift == None) and not (start_time == None):
        _warn("timeshift: shift and start_time specified: ignoring shift\n")
        shift = None
    if shift == None:
        if (start_time == None) or (start_time < 0):
            start_time = 0
        # shift = start_time - from_time

    i = 1   # ignore first element (ticks)
    tracks = set(tracks)  # defend against tuples and lists
    earliest = 1000000000
    if not (start_time == None) or shift < 0:  # first find the earliest event
        while i < len(score):
            if len(tracks) and not ((i-1) in tracks):
                i += 1
                continue
            for event in score[i]:
                 if event[1] < from_time:
                     continue  # just inspect the to_be_shifted events
                 if event[1] < earliest:
                     earliest = event[1]
            i += 1
    if earliest > 999999999:
        earliest = 0
    if shift == None:
        shift = start_time - earliest
    elif (earliest + shift) < 0:
        start_time = 0
        shift = 0 - earliest

    i = 1   # ignore first element (ticks)
    while i < len(score):
        if len(tracks) == 0 or not ((i-1) in tracks):  # 3.8
            new_score.append(score[i])
            i += 1
            continue
        new_track = []
        for event in score[i]:
            new_event = list(event)
            #if new_event[1] == 0 and shift > 0 and new_event[0] != 'note':
            #    pass
            #elif new_event[1] >= from_time:
            if new_event[1] >= from_time:
                # 4.1 must not rightshift set_tempo
                if new_event[0] != 'set_tempo' or shift<0:
                    new_event[1] += shift
            elif (shift < 0) and (new_event[1] >= (from_time+shift)):
                continue
            new_track.append(new_event)
        if len(new_track) > 0:
            new_score.append(new_track)
        i += 1
    _clean_up_warnings()
    return new_score

def segment(score=None, start_time=None, end_time=None, start=0, end=100000000,
 tracks={0,1,2,3,4,5,6,7,8,10,11,12,13,14,15}):
    r'''Returns a "score" which is a segment of the one supplied
as the argument, beginning at "start_time" ticks and ending
at "end_time" ticks (or at the end if "end_time" is not supplied).
If the set "tracks" is specified, only those tracks will
be returned.
'''
    if score == None or len(score) < 2:
        return [1000, [],]
    if start_time == None:  # as of 4.2 start_time is recommended
        start_time = start  # start is legacy usage
    if end_time == None:    # likewise
        end_time = end
    new_score = [score[0],]
    my_type = score_type(score)
    if my_type == '':
        return new_score
    if my_type == 'opus':
        # more difficult (disconnecting note_on's from their note_off's)...
        _warn("segment: opus format is not supported\n")
        _clean_up_warnings()
        return new_score
    i = 1   # ignore first element (ticks); we count in ticks anyway
    tracks = set(tracks)  # defend against tuples and lists
    while i < len(score):
        if len(tracks) and not ((i-1) in tracks):
            i += 1
            continue
        new_track = []
        channel2cc_num  = {}     # most recent controller change before start
        channel2cc_val  = {}
        channel2cc_time = {}
        channel2patch_num  = {}  # keep most recent patch change before start
        channel2patch_time = {}
        set_tempo_num  = 500000 # most recent tempo change before start 6.3
        set_tempo_time = 0
        earliest_note_time = end_time
        for event in score[i]:
            if event[0] == 'control_change':  # 6.5
                cc_time = channel2cc_time.get(event[2]) or 0
                if (event[1] <= start_time) and (event[1] >= cc_time):
                    channel2cc_num[event[2]]  = event[3]
                    channel2cc_val[event[2]]  = event[4]
                    channel2cc_time[event[2]] = event[1]
            elif event[0] == 'patch_change':
                patch_time = channel2patch_time.get(event[2]) or 0
                if (event[1]<=start_time) and (event[1] >= patch_time):  # 2.0
                    channel2patch_num[event[2]]  = event[3]
                    channel2patch_time[event[2]] = event[1]
            elif event[0] == 'set_tempo':
                if (event[1]<=start_time) and (event[1]>=set_tempo_time): #6.4
                    set_tempo_num  = event[2]
                    set_tempo_time = event[1]
            if (event[1] >= start_time) and (event[1] <= end_time):
                new_track.append(event)
                if (event[0] == 'note') and (event[1] < earliest_note_time):
                    earliest_note_time = event[1]
        if len(new_track) > 0:
            new_track.append(['set_tempo', start_time, set_tempo_num])
            for c in channel2patch_num:
                new_track.append(['patch_change',start_time,c,channel2patch_num[c]],)
            for c in channel2cc_num:   # 6.5
                new_track.append(['control_change',start_time,c,channel2cc_num[c],channel2cc_val[c]])
            new_score.append(new_track)
        i += 1
    _clean_up_warnings()
    return new_score

def score_type(opus_or_score=None):
    r'''Returns a string, either 'opus' or 'score' or ''
'''
    if opus_or_score == None or str(type(opus_or_score)).find('list')<0 or len(opus_or_score) < 2:
        return ''
    i = 1   # ignore first element
    while i < len(opus_or_score):
        for event in opus_or_score[i]:
            if event[0] == 'note':
                return 'score'
            elif event[0] == 'note_on':
                return 'opus'
        i += 1
    return ''

def concatenate_scores(scores):
    r'''Concatenates a list of scores into one score.
If the scores differ in their "ticks" parameter,
they will all get converted to millisecond-tick format.
'''
    # the deepcopys are needed if the input_score's are refs to the same obj
    # e.g. if invoked by midisox's repeat()
    input_scores = _consistentise_ticks(scores)  # 3.7
    output_score = copy.deepcopy(input_scores[0])
    for input_score in input_scores[1:]:
        output_stats = score2stats(output_score)
        delta_ticks = output_stats['nticks']
        itrack = 1
        while itrack < len(input_score):
            if itrack >= len(output_score): # new output track if doesn't exist
                output_score.append([])
            for event in input_score[itrack]:
                output_score[itrack].append(copy.deepcopy(event))
                output_score[itrack][-1][1] += delta_ticks
            itrack += 1
    return output_score

def merge_scores(scores):
    r'''Merges a list of scores into one score.  A merged score comprises
all of the tracks from all of the input scores; un-merging is possible
by selecting just some of the tracks.  If the scores differ in their
"ticks" parameter, they will all get converted to millisecond-tick
format.  merge_scores attempts to resolve channel-conflicts,
but there are of course only 15 available channels...
'''
    input_scores = _consistentise_ticks(scores)  # 3.6
    output_score = [1000]
    channels_so_far = set()
    all_channels = {0,1,2,3,4,5,6,7,8,10,11,12,13,14,15}
    global Event2channelindex
    for input_score in input_scores:
        new_channels = set(score2stats(input_score).get('channels_total', []))
        new_channels.discard(9)  # 2.8 cha9 must remain cha9 (in GM)
        for channel in channels_so_far & new_channels:
            # consistently choose lowest avaiable, to ease testing
            free_channels = list(all_channels - (channels_so_far|new_channels))
            if len(free_channels) > 0:
                free_channels.sort()
                free_channel = free_channels[0]
            else:
                free_channel = None
                break
            itrack = 1
            while itrack < len(input_score):
                for input_event in input_score[itrack]:
                    channel_index=Event2channelindex.get(input_event[0],False)
                    if channel_index and input_event[channel_index]==channel:
                        input_event[channel_index] = free_channel
                itrack += 1
            channels_so_far.add(free_channel)

        channels_so_far |= new_channels
        output_score.extend(input_score[1:])
    return output_score

def _ticks(event):
    return event[1]
def mix_opus_tracks(input_tracks):   # 5.5
    r'''Mixes an array of tracks into one track.  A mixed track
cannot be un-mixed.  It is assumed that the tracks share the same
ticks parameter and the same tempo.
Mixing score-tracks is trivial (just insert all events into one array).
Mixing opus-tracks is only slightly harder, but it's common enough
that a dedicated function is useful.
'''
    output_score = [1000, []]
    for input_track in input_tracks:   # 5.8
        input_score = opus2score([1000, input_track])
        for event in input_score[1]:
            output_score[1].append(event)
    output_score[1].sort(key=_ticks) 
    output_opus = score2opus(output_score)
    return output_opus[1]

def mix_scores(scores):
    r'''Mixes a list of scores into one one-track score.
A mixed score cannot be un-mixed.  Hopefully the scores
have no undesirable channel-conflicts between them.
If the scores differ in their "ticks" parameter,
they will all get converted to millisecond-tick format.
'''
    input_scores = _consistentise_ticks(scores)  # 3.6
    output_score = [1000, []]
    for input_score in input_scores:
        for input_track in input_score[1:]:
            output_score[1].extend(input_track)
    return output_score

def score2stats(opus_or_score=None):
    r'''Returns a dict of some basic stats about the score, like
bank_select (list of tuples (msb,lsb)),
channels_by_track (list of lists), channels_total (set),
general_midi_mode (list),
ntracks, nticks, patch_changes_by_track (list of dicts),
num_notes_by_channel (list of numbers),
patch_changes_total (set),
percussion (dict histogram of channel 9 events),
pitches (dict histogram of pitches on channels other than 9),
pitch_range_by_track (list, by track, of two-member-tuples),
pitch_range_sum (sum over tracks of the pitch_ranges),
'''
    bank_select_msb = -1
    bank_select_lsb = -1
    bank_select = []
    channels_by_track = []
    channels_total    = set([])
    general_midi_mode = []
    num_notes_by_channel = dict([])
    patches_used_by_track  = []
    patches_used_total     = set([])
    patch_changes_by_track = []
    patch_changes_total    = set([])
    percussion = dict([]) # histogram of channel 9 "pitches"
    pitches    = dict([]) # histogram of pitch-occurrences channels 0-8,10-15
    pitch_range_sum = 0   # u pitch-ranges of each track
    pitch_range_by_track = []
    is_a_score = True
    if opus_or_score == None:
        return {'bank_select':[], 'channels_by_track':[], 'channels_total':[],
         'general_midi_mode':[], 'ntracks':0, 'nticks':0,
         'num_notes_by_channel':dict([]),
         'patch_changes_by_track':[], 'patch_changes_total':[],
         'percussion':{}, 'pitches':{}, 'pitch_range_by_track':[],
         'ticks_per_quarter':0, 'pitch_range_sum':0}
    ticks_per_quarter = opus_or_score[0]
    i = 1   # ignore first element, which is ticks
    nticks = 0
    while i < len(opus_or_score):
        highest_pitch = 0
        lowest_pitch = 128
        channels_this_track = set([])
        patch_changes_this_track = dict({})
        for event in opus_or_score[i]:
            if event[0] == 'note':
                num_notes_by_channel[event[3]] = num_notes_by_channel.get(event[3],0) + 1
                if event[3] == 9:
                    percussion[event[4]] = percussion.get(event[4],0) + 1
                else:
                    pitches[event[4]]    = pitches.get(event[4],0) + 1
                    if event[4] > highest_pitch:
                        highest_pitch = event[4]
                    if event[4] < lowest_pitch:
                        lowest_pitch = event[4]
                channels_this_track.add(event[3])
                channels_total.add(event[3])
                finish_time = event[1] + event[2]
                if finish_time > nticks:
                    nticks = finish_time
            elif event[0] == 'note_off' or (event[0] == 'note_on' and event[4] == 0):  # 4.8
                finish_time = event[1]
                if finish_time > nticks:
                    nticks = finish_time
            elif event[0] == 'note_on':
                is_a_score = False
                num_notes_by_channel[event[2]] = num_notes_by_channel.get(event[2],0) + 1
                if event[2] == 9:
                    percussion[event[3]] = percussion.get(event[3],0) + 1
                else:
                    pitches[event[3]]    = pitches.get(event[3],0) + 1
                    if event[3] > highest_pitch:
                        highest_pitch = event[3]
                    if event[3] < lowest_pitch:
                        lowest_pitch = event[3]
                channels_this_track.add(event[2])
                channels_total.add(event[2])
            elif event[0] == 'patch_change':
                patch_changes_this_track[event[2]] = event[3]
                patch_changes_total.add(event[3])
            elif event[0] == 'control_change':
                if event[3] == 0:  # bank select MSB
                    bank_select_msb = event[4]
                elif event[3] == 32:  # bank select LSB
                    bank_select_lsb = event[4]
                if bank_select_msb >= 0 and bank_select_lsb >= 0:
                    bank_select.append((bank_select_msb,bank_select_lsb))
                    bank_select_msb = -1
                    bank_select_lsb = -1
            elif event[0] == 'sysex_f0':
                if _sysex2midimode.get(event[2], -1) >= 0:
                    general_midi_mode.append(_sysex2midimode.get(event[2]))
            if is_a_score:
                if event[1] > nticks:
                    nticks = event[1]
            else:
                nticks += event[1]
        if lowest_pitch == 128:
            lowest_pitch = 0
        channels_by_track.append(channels_this_track)
        patch_changes_by_track.append(patch_changes_this_track)
        pitch_range_by_track.append((lowest_pitch,highest_pitch))
        pitch_range_sum += (highest_pitch-lowest_pitch)
        i += 1

    return {'bank_select':bank_select,
            'channels_by_track':channels_by_track,
            'channels_total':channels_total,
            'general_midi_mode':general_midi_mode,
            'ntracks':len(opus_or_score)-1,
            'nticks':nticks,
            'num_notes_by_channel':num_notes_by_channel,
            'patch_changes_by_track':patch_changes_by_track,
            'patch_changes_total':patch_changes_total,
            'percussion':percussion,
            'pitches':pitches,
            'pitch_range_by_track':pitch_range_by_track,
            'pitch_range_sum':pitch_range_sum,
            'ticks_per_quarter':ticks_per_quarter}

#----------------------------- Event stuff --------------------------

_sysex2midimode = {
    "\x7E\x7F\x09\x01\xF7": 1,
    "\x7E\x7F\x09\x02\xF7": 0,
    "\x7E\x7F\x09\x03\xF7": 2,
}

# Some public-access tuples:
MIDI_events = tuple('''note_off note_on key_after_touch
control_change patch_change channel_after_touch
pitch_wheel_change'''.split())

Text_events = tuple('''text_event copyright_text_event
track_name instrument_name lyric marker cue_point text_event_08
text_event_09 text_event_0a text_event_0b text_event_0c
text_event_0d text_event_0e text_event_0f'''.split())

Nontext_meta_events = tuple('''end_track set_tempo
smpte_offset time_signature key_signature sequencer_specific
raw_meta_event sysex_f0 sysex_f7 song_position song_select
tune_request'''.split())
# unsupported: raw_data

# Actually, 'tune_request' is is F-series event, not strictly a meta-event...
Meta_events = Text_events + Nontext_meta_events
All_events  = MIDI_events + Meta_events

# And three dictionaries:
Number2patch = {   # General MIDI patch numbers:
0:'Acoustic Grand',
1:'Bright Acoustic',
2:'Electric Grand',
3:'Honky-Tonk',
4:'Electric Piano 1',
5:'Electric Piano 2',
6:'Harpsichord',
7:'Clav',
8:'Celesta',
9:'Glockenspiel',
10:'Music Box',
11:'Vibraphone',
12:'Marimba',
13:'Xylophone',
14:'Tubular Bells',
15:'Dulcimer',
16:'Drawbar Organ',
17:'Percussive Organ',
18:'Rock Organ',
19:'Church Organ',
20:'Reed Organ',
21:'Accordion',
22:'Harmonica',
23:'Tango Accordion',
24:'Acoustic Guitar(nylon)',
25:'Acoustic Guitar(steel)',
26:'Electric Guitar(jazz)',
27:'Electric Guitar(clean)',
28:'Electric Guitar(muted)',
29:'Overdriven Guitar',
30:'Distortion Guitar',
31:'Guitar Harmonics',
32:'Acoustic Bass',
33:'Electric Bass(finger)',
34:'Electric Bass(pick)',
35:'Fretless Bass',
36:'Slap Bass 1',
37:'Slap Bass 2',
38:'Synth Bass 1',
39:'Synth Bass 2',
40:'Violin',
41:'Viola',
42:'Cello',
43:'Contrabass',
44:'Tremolo Strings',
45:'Pizzicato Strings',
46:'Orchestral Harp',
47:'Timpani',
48:'String Ensemble 1',
49:'String Ensemble 2',
50:'SynthStrings 1',
51:'SynthStrings 2',
52:'Choir Aahs',
53:'Voice Oohs',
54:'Synth Voice',
55:'Orchestra Hit',
56:'Trumpet',
57:'Trombone',
58:'Tuba',
59:'Muted Trumpet',
60:'French Horn',
61:'Brass Section',
62:'SynthBrass 1',
63:'SynthBrass 2',
64:'Soprano Sax',
65:'Alto Sax',
66:'Tenor Sax',
67:'Baritone Sax',
68:'Oboe',
69:'English Horn',
70:'Bassoon',
71:'Clarinet',
72:'Piccolo',
73:'Flute',
74:'Recorder',
75:'Pan Flute',
76:'Blown Bottle',
77:'Skakuhachi',
78:'Whistle',
79:'Ocarina',
80:'Lead 1 (square)',
81:'Lead 2 (sawtooth)',
82:'Lead 3 (calliope)',
83:'Lead 4 (chiff)',
84:'Lead 5 (charang)',
85:'Lead 6 (voice)',
86:'Lead 7 (fifths)',
87:'Lead 8 (bass+lead)',
88:'Pad 1 (new age)',
89:'Pad 2 (warm)',
90:'Pad 3 (polysynth)',
91:'Pad 4 (choir)',
92:'Pad 5 (bowed)',
93:'Pad 6 (metallic)',
94:'Pad 7 (halo)',
95:'Pad 8 (sweep)',
96:'FX 1 (rain)',
97:'FX 2 (soundtrack)',
98:'FX 3 (crystal)',
99:'FX 4 (atmosphere)',
100:'FX 5 (brightness)',
101:'FX 6 (goblins)',
102:'FX 7 (echoes)',
103:'FX 8 (sci-fi)',
104:'Sitar',
105:'Banjo',
106:'Shamisen',
107:'Koto',
108:'Kalimba',
109:'Bagpipe',
110:'Fiddle',
111:'Shanai',
112:'Tinkle Bell',
113:'Agogo',
114:'Steel Drums',
115:'Woodblock',
116:'Taiko Drum',
117:'Melodic Tom',
118:'Synth Drum',
119:'Reverse Cymbal',
120:'Guitar Fret Noise',
121:'Breath Noise',
122:'Seashore',
123:'Bird Tweet',
124:'Telephone Ring',
125:'Helicopter',
126:'Applause',
127:'Gunshot',
}
Notenum2percussion = {   # General MIDI Percussion (on Channel 9):
35:'Acoustic Bass Drum',
36:'Bass Drum 1',
37:'Side Stick',
38:'Acoustic Snare',
39:'Hand Clap',
40:'Electric Snare',
41:'Low Floor Tom',
42:'Closed Hi-Hat',
43:'High Floor Tom',
44:'Pedal Hi-Hat',
45:'Low Tom',
46:'Open Hi-Hat',
47:'Low-Mid Tom',
48:'Hi-Mid Tom',
49:'Crash Cymbal 1',
50:'High Tom',
51:'Ride Cymbal 1',
52:'Chinese Cymbal',
53:'Ride Bell',
54:'Tambourine',
55:'Splash Cymbal',
56:'Cowbell',
57:'Crash Cymbal 2',
58:'Vibraslap',
59:'Ride Cymbal 2',
60:'Hi Bongo',
61:'Low Bongo',
62:'Mute Hi Conga',
63:'Open Hi Conga',
64:'Low Conga',
65:'High Timbale',
66:'Low Timbale',
67:'High Agogo',
68:'Low Agogo',
69:'Cabasa',
70:'Maracas',
71:'Short Whistle',
72:'Long Whistle',
73:'Short Guiro',
74:'Long Guiro',
75:'Claves',
76:'Hi Wood Block',
77:'Low Wood Block',
78:'Mute Cuica',
79:'Open Cuica',
80:'Mute Triangle',
81:'Open Triangle',
}

Event2channelindex = { 'note':3, 'note_off':2, 'note_on':2,
 'key_after_touch':2, 'control_change':2, 'patch_change':2,
 'channel_after_touch':2, 'pitch_wheel_change':2
}

################################################################
# The code below this line is full of frightening things, all to
# do with the actual encoding and decoding of binary MIDI data.

def _twobytes2int(byte_a):
    r'''decode a 16 bit quantity from two bytes,'''
    return (byte_a[1] | (byte_a[0] << 8))

def _int2twobytes(int_16bit):
    r'''encode a 16 bit quantity into two bytes,'''
    return bytes([(int_16bit>>8) & 0xFF, int_16bit & 0xFF])

def _read_14_bit(byte_a):
    r'''decode a 14 bit quantity from two bytes,'''
    return (byte_a[0] | (byte_a[1] << 7))

def _write_14_bit(int_14bit):
    r'''encode a 14 bit quantity into two bytes,'''
    return bytes([int_14bit & 0x7F, (int_14bit>>7) & 0x7F])

def _ber_compressed_int(integer):
    r'''BER compressed integer (not an ASN.1 BER, see perlpacktut for
details).  Its bytes represent an unsigned integer in base 128,
most significant digit first, with as few digits as possible.
Bit eight (the high bit) is set on each byte except the last.
'''
    ber = bytearray(b'')
    seven_bits = 0x7F & integer
    ber.insert(0, seven_bits)  # XXX surely should convert to a char ?
    integer >>= 7
    while integer > 0:
        seven_bits = 0x7F & integer
        ber.insert(0, 0x80|seven_bits)  # XXX surely should convert to a char ?
        integer >>= 7
    return ber

def _unshift_ber_int(ba):
    r'''Given a bytearray, returns a tuple of (the ber-integer at the
start, and the remainder of the bytearray).
'''
    if not len(ba):   # 6.7
        _warn('_unshift_ber_int: no integer found')
        return ((0, b""))
    byte = ba.pop(0)
    integer = 0
    while True:
        integer += (byte & 0x7F)
        if not (byte & 0x80):
            return ((integer, ba))
        if not len(ba):
            _warn('_unshift_ber_int: no end-of-integer found')
            return ((0, ba))
        byte = ba.pop(0)
        integer <<= 7

def _clean_up_warnings():  # 5.4
    # Call this before returning from any publicly callable function
    # whenever there's a possibility that a warning might have been printed
    # by the function, or by any private functions it might have called.
    global _previous_times
    global _previous_warning
    if _previous_times > 1:
        # E:1176, 0: invalid syntax (<string>, line 1176) (syntax-error) ???
        # print('  previous message repeated '+str(_previous_times)+' times', file=sys.stderr)
        # 6.7
        sys.stderr.write('  previous message repeated {0} times\n'.format(_previous_times))
    elif _previous_times > 0:
        sys.stderr.write('  previous message repeated\n')
    _previous_times = 0
    _previous_warning = ''

def _warn(s=''):
    global _previous_times
    global _previous_warning
    if s == _previous_warning:  # 5.4
        _previous_times = _previous_times + 1
    else:
        _clean_up_warnings()
        sys.stderr.write(str(s)+"\n")
        _previous_warning = s

def _some_text_event(which_kind=0x01, text=b'some_text', text_encoding='ISO-8859-1'):
    if str(type(text)).find("'str'") >= 0:   # 6.4 test for back-compatibility
        data = bytes(text, encoding=text_encoding)
    else:
        data = bytes(text)
    return b'\xFF'+bytes((which_kind,))+_ber_compressed_int(len(data))+data

def _consistentise_ticks(scores):  # 3.6
    # used by mix_scores, merge_scores, concatenate_scores
    if len(scores) == 1:
         return copy.deepcopy(scores)
    are_consistent = True
    ticks = scores[0][0]
    iscore = 1
    while iscore < len(scores):
        if scores[iscore][0] != ticks:
            are_consistent = False
            break
        iscore += 1
    if are_consistent:
        return copy.deepcopy(scores)
    new_scores = []
    iscore = 0
    while iscore < len(scores):
        score = scores[iscore]
        new_scores.append(opus2score(to_millisecs(score2opus(score))))
        iscore += 1
    return new_scores


###########################################################################

def _decode(trackdata=b'', exclude=None, include=None,
 event_callback=None, exclusive_event_callback=None, no_eot_magic=False):
    r'''Decodes MIDI track data into an opus-style list of events.
The options:
  'exclude' is a list of event types which will be ignored SHOULD BE A SET
  'include' (and no exclude), makes exclude a list
       of all possible events, /minus/ what include specifies
  'event_callback' is a coderef
  'exclusive_event_callback' is a coderef
'''
    trackdata = bytearray(trackdata)
    if exclude == None:
        exclude = []
    if include == None:
        include = []
    if include and not exclude:
        exclude = All_events
    include = set(include)
    exclude = set(exclude)

    # Pointer = 0;  not used here; we eat through the bytearray instead.
    event_code = -1; # used for running status
    event_count = 0;
    events = []

    while(len(trackdata)):
        # loop while there's anything to analyze ...
        eot = False   # When True, the event registrar aborts this loop
        event_count += 1

        E = []
        # E for events - we'll feed it to the event registrar at the end.

        # Slice off the delta time code, and analyze it
        [time, remainder] = _unshift_ber_int(trackdata)

        # Now let's see what we can make of the command
        first_byte = trackdata.pop(0) & 0xFF

        if (first_byte < 0xF0):  # It's a MIDI event
            if (first_byte & 0x80):
                event_code = first_byte
            else:
                # It wants running status; use last event_code value
                trackdata.insert(0, first_byte)
                if (event_code == -1):
                    _warn("Running status not set; Aborting track.")
                    return []

            command = event_code & 0xF0
            channel = event_code & 0x0F

            if (command == 0xF6):  #  0-byte argument
                pass
            elif (command == 0xC0 or command == 0xD0):  #  1-byte argument
                parameter = trackdata.pop(0)  # could be B
            else: # 2-byte argument could be BB or 14-bit
                parameter = (trackdata.pop(0), trackdata.pop(0))

            #################################################################
            # MIDI events

            if (command      == 0x80):
                if 'note_off' in exclude:
                    continue
                E = ['note_off', time, channel, parameter[0], parameter[1]]
            elif (command == 0x90):
                if 'note_on' in exclude:
                    continue
                E = ['note_on', time, channel, parameter[0], parameter[1]]
            elif (command == 0xA0):
                if 'key_after_touch' in exclude:
                    continue
                E = ['key_after_touch',time,channel,parameter[0],parameter[1]]
            elif (command == 0xB0):
                if 'control_change' in exclude:
                    continue
                E = ['control_change',time,channel,parameter[0],parameter[1]]
            elif (command == 0xC0):
                if 'patch_change' in exclude:
                    continue
                E = ['patch_change', time, channel, parameter]
            elif (command == 0xD0):
                if 'channel_after_touch' in exclude:
                    continue
                E = ['channel_after_touch', time, channel, parameter]
            elif (command == 0xE0):
                if 'pitch_wheel_change' in exclude:
                    continue
                E = ['pitch_wheel_change', time, channel,
                 _read_14_bit(parameter)-0x2000]
            else:
                _warn("Shouldn't get here; command="+hex(command))

        elif (first_byte == 0xFF):  # It's a Meta-Event! ##################
            #[command, length, remainder] =
            #    unpack("xCwa*", substr(trackdata, $Pointer, 6));
            #Pointer += 6 - len(remainder);
            #    # Move past JUST the length-encoded.
            command = trackdata.pop(0) & 0xFF
            [length, trackdata] = _unshift_ber_int(trackdata)
            if (command      == 0x00):
                 if (length == 2):
                     E = ['set_sequence_number',time,_twobytes2int(trackdata)]
                 else:
                     _warn('set_sequence_number: length must be 2, not '+str(length))
                     E = ['set_sequence_number', time, 0]

            elif command >= 0x01 and command <= 0x0f:   # Text events
                # 6.2 take it in bytes; let the user get the right encoding.
                # text_str = trackdata[0:length].decode('ascii','ignore')
                # text_str = trackdata[0:length].decode('ISO-8859-1')
                # 6.4 take it in bytes; let the user get the right encoding.
                text_data = bytes(trackdata[0:length])   # 6.4
                # Defined text events
                if (command == 0x01):
                     E = ['text_event', time, text_data]
                elif (command == 0x02):
                     E = ['copyright_text_event', time, text_data]
                elif (command == 0x03):
                     E = ['track_name', time, text_data]
                elif (command == 0x04):
                     E = ['instrument_name', time, text_data]
                elif (command == 0x05):
                     E = ['lyric', time, text_data]
                elif (command == 0x06):
                     E = ['marker', time, text_data]
                elif (command == 0x07):
                     E = ['cue_point', time, text_data]
                # Reserved but apparently unassigned text events
                elif (command == 0x08):
                     E = ['text_event_08', time, text_data]
                elif (command == 0x09):
                     E = ['text_event_09', time, text_data]
                elif (command == 0x0a):
                     E = ['text_event_0a', time, text_data]
                elif (command == 0x0b):
                     E = ['text_event_0b', time, text_data]
                elif (command == 0x0c):
                     E = ['text_event_0c', time, text_data]
                elif (command == 0x0d):
                     E = ['text_event_0d', time, text_data]
                elif (command == 0x0e):
                     E = ['text_event_0e', time, text_data]
                elif (command == 0x0f):
                     E = ['text_event_0f', time, text_data]

            # Now the sticky events -------------------------------------
            elif (command == 0x2F):
                 E = ['end_track', time]
                     # The code for handling this, oddly, comes LATER,
                     # in the event registrar.
            elif (command == 0x51): # DTime, Microseconds/Crochet
                 if length != 3:
                     _warn('set_tempo event, but length='+str(length))
                 E = ['set_tempo', time,
                      struct.unpack(">I", b'\x00'+trackdata[0:3])[0]]
            elif (command == 0x54):
                 if length != 5:   # DTime, HR, MN, SE, FR, FF
                     _warn('smpte_offset event, but length='+str(length))
                 E = ['smpte_offset',time] + list(struct.unpack(">BBBBB",trackdata[0:5]))
            elif (command == 0x58):
                 if length != 4:   # DTime, NN, DD, CC, BB
                     _warn('time_signature event, but length='+str(length))
                 E = ['time_signature', time]+list(trackdata[0:4])
            elif (command == 0x59):
                 if length != 2:   # DTime, SF(signed), MI
                     _warn('key_signature event, but length='+str(length))
                 E = ['key_signature',time] + list(struct.unpack(">bB",trackdata[0:2]))
            elif (command == 0x7F):   # 6.4
                 E = ['sequencer_specific',time, bytes(trackdata[0:length])]
            else:
                 E = ['raw_meta_event', time, command,
                   bytes(trackdata[0:length])]   # 6.0
                 #"[uninterpretable meta-event command of length length]"
                 # DTime, Command, Binary Data
                 # It's uninterpretable; record it as raw_data.

            # Pointer += length; #  Now move Pointer
            trackdata = trackdata[length:]

        ######################################################################
        elif (first_byte == 0xF0 or first_byte == 0xF7):
            # Note that sysexes in MIDI /files/ are different than sysexes
            # in MIDI transmissions!! The vast majority of system exclusive
            # messages will just use the F0 format. For instance, the
            # transmitted message F0 43 12 00 07 F7 would be stored in a
            # MIDI file as F0 05 43 12 00 07 F7. As mentioned above, it is
            # required to include the F7 at the end so that the reader of the
            # MIDI file knows that it has read the entire message. (But the F7
            # is omitted if this is a non-final block in a multiblock sysex;
            # but the F7 (if there) is counted in the message's declared
            # length, so we don't have to think about it anyway.)
            #command = trackdata.pop(0)
            [length, trackdata] = _unshift_ber_int(trackdata)
            if first_byte == 0xF0:
                # 20091008 added ISO-8859-1 to get an 8-bit str
                # 6.4 return bytes instead
                E = ['sysex_f0', time, bytes(trackdata[0:length])]
            else:
                E = ['sysex_f7', time, bytes(trackdata[0:length])]
            trackdata = trackdata[length:]

        ######################################################################
        # Now, the MIDI file spec says:
        #  <track data> = <MTrk event>+
        #  <MTrk event> = <delta-time> <event>
        #  <event> = <MIDI event> | <sysex event> | <meta-event>
        # I know that, on the wire, <MIDI event> can include note_on,
        # note_off, and all the other 8x to Ex events, AND Fx events
        # other than F0, F7, and FF -- namely, <song position msg>,
        # <song select msg>, and <tune request>.
        #
        # Whether these can occur in MIDI files is not clear specified
        # from the MIDI file spec.  So, I'm going to assume that
        # they CAN, in practice, occur.  I don't know whether it's
        # proper for you to actually emit these into a MIDI file.
        
        elif (first_byte == 0xF2):   # DTime, Beats
            #  <song position msg> ::=     F2 <data pair>
            E = ['song_position', time, _read_14_bit(trackdata[:2])]
            trackdata = trackdata[2:]

        elif (first_byte == 0xF3):   # <song select msg> ::= F3 <data singlet>
            # E = ['song_select', time, struct.unpack('>B',trackdata.pop(0))[0]]
            E = ['song_select', time, trackdata[0]]
            trackdata = trackdata[1:]
            # DTime, Thing (what?! song number?  whatever ...)

        elif (first_byte == 0xF6):   # DTime
            E = ['tune_request', time]
            # What would a tune request be doing in a MIDI /file/?

        #########################################################
        # ADD MORE META-EVENTS HERE.  TODO:
        # f1 -- MTC Quarter Frame Message. One data byte follows
        #     the Status; it's the time code value, from 0 to 127.
        # f8 -- MIDI clock.    no data.
        # fa -- MIDI start.    no data.
        # fb -- MIDI continue. no data.
        # fc -- MIDI stop.     no data.
        # fe -- Active sense.  no data.
        # f4 f5 f9 fd -- unallocated

            r'''
        elif (first_byte > 0xF0) { # Some unknown kinda F-series event ####
            # Here we only produce a one-byte piece of raw data.
            # But the encoder for 'raw_data' accepts any length of it.
            E = [ 'raw_data',
                         time, substr(trackdata,Pointer,1) ]
            # DTime and the Data (in this case, the one Event-byte)
            ++Pointer;  # itself

'''
        elif first_byte > 0xF0:  # Some unknown F-series event
            # Here we only produce a one-byte piece of raw data.
            # E = ['raw_data', time, bytest(trackdata[0])]   # 6.4
            E = ['raw_data', time, trackdata[0]]   # 6.4 6.7
            trackdata = trackdata[1:]
        else:  # Fallthru.
            _warn("Aborting track.  Command-byte first_byte="+hex(first_byte))
            break
        # End of the big if-group


        ######################################################################
        #  THE EVENT REGISTRAR...
        if E and  (E[0] == 'end_track'):
            # This is the code for exceptional handling of the EOT event.
            eot = True
            if not no_eot_magic:
                if E[1] > 0:  # a null text-event to carry the delta-time
                    E = ['text_event', E[1], '']
                else:
                    E = []   # EOT with a delta-time of 0; ignore it.
        
        if E and not (E[0] in exclude):
            #if ( $exclusive_event_callback ):
            #    &{ $exclusive_event_callback }( @E );
            #else:
            #    &{ $event_callback }( @E ) if $event_callback;
                events.append(E)
        if eot:
            break

    # End of the big "Event" while-block

    return events


###########################################################################
def _encode(events_lol, unknown_callback=None, never_add_eot=False,
  no_eot_magic=False, no_running_status=False, text_encoding='ISO-8859-1'):
    # encode an event structure, presumably for writing to a file
    # Calling format:
    #   $data_r = MIDI::Event::encode( \@event_lol, { options } );
    # Takes a REFERENCE to an event structure (a LoL)
    # Returns an (unblessed) REFERENCE to track data.

    # If you want to use this to encode a /single/ event,
    # you still have to do it as a reference to an event structure (a LoL)
    # that just happens to have just one event.  I.e.,
    #   encode( [ $event ] ) or encode( [ [ 'note_on', 100, 5, 42, 64] ] )
    # If you're doing this, consider the never_add_eot track option, as in
    #   print MIDI ${ encode( [ $event], { 'never_add_eot' => 1} ) };

    data = [] # what I'll store the chunks of byte-data in

    # This is so my end_track magic won't corrupt the original
    events = copy.deepcopy(events_lol)

    if not never_add_eot:
        # One way or another, tack on an 'end_track'
        if events:
            last = events[-1]
            if not (last[0] == 'end_track'):  # no end_track already
                if (last[0] == 'text_event' and len(last[2]) == 0):
                    # 0-length text event at track-end.
                    if no_eot_magic:
                        # Exceptional case: don't mess with track-final
                        # 0-length text_events; just peg on an end_track
                        events.append(['end_track', 0])
                    else:
                        # NORMAL CASE: replace with an end_track, leaving DTime
                        last[0] = 'end_track'
                else:
                    # last event was neither 0-length text_event nor end_track
                    events.append(['end_track', 0])
        else:  # an eventless track!
            events = [['end_track', 0],]

    # maybe_running_status = not no_running_status # unused? 4.7
    last_status = -1

    for event_r in (events):
        E = copy.deepcopy(event_r)
        # otherwise the shifting'd corrupt the original
        if not E:
            continue

        event = E.pop(0)
        if not len(event):
            continue

        dtime = int(E.pop(0))
        # print('event='+str(event)+' dtime='+str(dtime))

        event_data = ''

        if (   # MIDI events -- eligible for running status
             event    == 'note_on'
             or event == 'note_off'
             or event == 'control_change'
             or event == 'key_after_touch'
             or event == 'patch_change'
             or event == 'channel_after_touch'
             or event == 'pitch_wheel_change'  ):

            # This block is where we spend most of the time.  Gotta be tight.
            if (event == 'note_off'):
                status = 0x80 | (int(E[0]) & 0x0F)
                parameters = struct.pack('>BB', int(E[1])&0x7F, int(E[2])&0x7F)
            elif (event == 'note_on'):
                status = 0x90 | (int(E[0]) & 0x0F)
                parameters = struct.pack('>BB', int(E[1])&0x7F, int(E[2])&0x7F)
            elif (event == 'key_after_touch'):
                status = 0xA0 | (int(E[0]) & 0x0F)
                parameters = struct.pack('>BB', int(E[1])&0x7F, int(E[2])&0x7F)
            elif (event == 'control_change'):
                status = 0xB0 | (int(E[0]) & 0x0F)
                parameters = struct.pack('>BB', int(E[1])&0xFF, int(E[2])&0xFF)
            elif (event == 'patch_change'):
                status = 0xC0 | (int(E[0]) & 0x0F)
                parameters = struct.pack('>B', int(E[1]) & 0xFF)
            elif (event == 'channel_after_touch'):
                status = 0xD0 | (int(E[0]) & 0x0F)
                parameters = struct.pack('>B', int(E[1]) & 0xFF)
            elif (event == 'pitch_wheel_change'):
                status = 0xE0 | (int(E[0]) & 0x0F)
                parameters =  _write_14_bit(int(E[1]) + 0x2000)
            else:
                _warn("BADASS FREAKOUT ERROR 31415!")

            # And now the encoding
            # w = BER compressed integer (not ASN.1 BER, see perlpacktut for
            # details).  Its bytes represent an unsigned integer in base 128,
            # most significant digit first, with as few digits as possible.
            # Bit eight (the high bit) is set on each byte except the last.

            data.append(_ber_compressed_int(dtime))
            if (status != last_status) or no_running_status:
                data.append(struct.pack('>B', status))
            data.append(parameters)
 
            last_status = status
            continue
        else:
            # Not a MIDI event.
            # All the code in this block could be more efficient,
            # but this is not where the code needs to be tight.
            # print "zaz $event\n";
            last_status = -1

            if event == 'raw_meta_event':
                event_data = _some_text_event(int(E[0]), E[1], text_encoding)
            elif (event == 'set_sequence_number'):  # 3.9
                event_data = b'\xFF\x00\x02'+_int2twobytes(E[0])

            # Text meta-events...
            # a case for a dict, I think (pjb) ...
            elif (event == 'text_event'):
                event_data = _some_text_event(0x01, E[0], text_encoding)
            elif (event == 'copyright_text_event'):
                event_data = _some_text_event(0x02, E[0], text_encoding)
            elif (event == 'track_name'):
                event_data = _some_text_event(0x03, E[0], text_encoding)
            elif (event == 'instrument_name'):
                event_data = _some_text_event(0x04, E[0], text_encoding)
            elif (event == 'lyric'):
                event_data = _some_text_event(0x05, E[0], text_encoding)
            elif (event == 'marker'):
                event_data = _some_text_event(0x06, E[0], text_encoding)
            elif (event == 'cue_point'):
                event_data = _some_text_event(0x07, E[0], text_encoding)
            elif (event == 'text_event_08'):
                event_data = _some_text_event(0x08, E[0], text_encoding)
            elif (event == 'text_event_09'):
                event_data = _some_text_event(0x09, E[0], text_encoding)
            elif (event == 'text_event_0a'):
                event_data = _some_text_event(0x0A, E[0], text_encoding)
            elif (event == 'text_event_0b'):
                event_data = _some_text_event(0x0B, E[0], text_encoding)
            elif (event == 'text_event_0c'):
                event_data = _some_text_event(0x0C, E[0], text_encoding)
            elif (event == 'text_event_0d'):
                event_data = _some_text_event(0x0D, E[0], text_encoding)
            elif (event == 'text_event_0e'):
                event_data = _some_text_event(0x0E, E[0], text_encoding)
            elif (event == 'text_event_0f'):
                event_data = _some_text_event(0x0F, E[0], text_encoding)
            # End of text meta-events

            elif (event == 'end_track'):
                event_data = b"\xFF\x2F\x00"

            elif (event == 'set_tempo'):
                #event_data = struct.pack(">BBwa*", 0xFF, 0x51, 3,
                #              substr( struct.pack('>I', E[0]), 1, 3))
                event_data = b'\xFF\x51\x03'+struct.pack('>I',E[0])[1:]
            elif (event == 'smpte_offset'):
                # event_data = struct.pack(">BBwBBBBB", 0xFF, 0x54, 5, E[0:5] )
                event_data = struct.pack(">BBBbBBBB", 0xFF,0x54,0x05,E[0],E[1],E[2],E[3],E[4])
            elif (event == 'time_signature'):
                # event_data = struct.pack(">BBwBBBB",  0xFF, 0x58, 4, E[0:4] )
                event_data = struct.pack(">BBBbBBB", 0xFF, 0x58, 0x04, E[0],E[1],E[2],E[3])
            elif (event == 'key_signature'):
                event_data = struct.pack(">BBBbB", 0xFF, 0x59, 0x02, E[0],E[1])
            elif (event == 'sequencer_specific'):
                # event_data = struct.pack(">BBwa*", 0xFF,0x7F, len(E[0]), E[0])
                event_data = _some_text_event(0x7F, E[0], text_encoding)
            # End of Meta-events

            # Other Things...
            elif (event == 'sysex_f0'):
                 #event_data = struct.pack(">Bwa*", 0xF0, len(E[0]), E[0])
                 #B=bitstring w=BER-compressed-integer a=null-padded-ascii-str
                 event_data = bytearray(b'\xF0')+_ber_compressed_int(len(E[0]))+bytearray(E[0])
            elif (event == 'sysex_f7'):
                 #event_data = struct.pack(">Bwa*", 0xF7, len(E[0]), E[0])
                 event_data = bytearray(b'\xF7')+_ber_compressed_int(len(E[0]))+bytearray(E[0])

            elif (event == 'song_position'):
                 event_data = b"\xF2" + _write_14_bit( E[0] )
            elif (event == 'song_select'):
                 event_data = struct.pack('>BB', 0xF3, E[0] )
            elif (event == 'tune_request'):
                 event_data = b"\xF6"
            elif (event == 'raw_data'):
                _warn("_encode: raw_data event not supported")
                # event_data = E[0]
                continue
            # End of Other Stuff

            else:
                # The Big Fallthru
                if unknown_callback:
                    # push(@data, &{ $unknown_callback }( @$event_r ))
                    pass
                else:
                    _warn("Unknown event: "+str(event))
                    # To surpress complaint here, just set
                    #  'unknown_callback' => sub { return () }
                continue

            #print "Event $event encoded part 2\n"
            if str(type(event_data)).find("'str'") >= 0:
                event_data = bytearray(event_data.encode('Latin1', 'ignore'))
            if len(event_data): # how could $event_data be empty
                # data.append(struct.pack('>wa*', dtime, event_data))
                # print(' event_data='+str(event_data))
                data.append(_ber_compressed_int(dtime)+event_data)

    return b''.join(data)

###################################################################################
###################################################################################
###################################################################################
#
#	Tegridy MIDI Module (TMIDI / tee-midi)
#	Version 1.4
#
#	Based upon and includes the amazing MIDI.py module v.6.7. by Peter Billam
#	pjb.com.au
#
#	Project Los Angeles
#	Tegridy Code 2021
# https://github.com/Tegridy-Code/Project-Los-Angeles
#
###################################################################################
###################################################################################
###################################################################################

import os

import datetime

import copy

from datetime import datetime

import secrets

import random

import pickle

import csv

import tqdm

from itertools import zip_longest
from itertools import groupby

from operator import itemgetter

import sys

from abc import ABC, abstractmethod

from difflib import SequenceMatcher as SM

import statistics

# from collections import defaultdict

###################################################################################

def Tegridy_MIDI_Processor(MIDI_file, 
                          MIDI_channel=0, 
                          time_denominator=1, 
                          transpose_all_notes_by_this_many_pitches = 0,
                          flip_notes=0,
                          randomize_notes=0,
                          randremove_notes=0,
                          MIDI_patch=[0, 24, 32, 40, 42, 46, 56, 71, 73],
                          voble=0):

    '''Tegridy MIDI Processor

    Input: A single MIDI file.
           Desired MIDI channel to process. Def. = 0. All but drums = -1 and all channels = 16
           Notes/Chords timings divider (denominator).

    Output: A list of MIDI chords and a list of melody notes.
    MIDI Chords: Sorted by pitch (chord[0] == highest pitch).
    Melody Notes: Sorted by start time.

    Format: MIDI.py Score Events format.

    Default precision: 1 ms per note/chord.

    Enjoy! :)

    Project Los Angeles
    Tegridy Code 2020'''

###########

    minimum_number_of_notes_per_chord = 2 # Must be 2 or more...

    debug = False

###########

    average_note_pitch = 0
    min_note = 127
    max_note = 0

    files_count = 0

    ev = 0

    chords_list_final = []
    chords_list = []
    events_matrix = []
    melody = []
    melody1 = []

    itrack = 1

    min_note = 0
    max_note = 0
    ev = 0
    patch = 0

    score = []
    rec_event = []

###########    

    def list_average(num):
      sum_num = 0
      for t in num:
          sum_num = sum_num + t           

      avg = sum_num / len(num)
      return avg

###########

    #print('Loading MIDI file...')
    midi_file = open(MIDI_file, 'rb')
    if debug: print('Processing File:', file_address)
    
    try:
      opus = midi2opus(midi_file.read())
    
    except:
      print('Bad file. Skipping...')
      print('File name:', MIDI_file)
      midi_file.close()
      return chords_list, melody
         
    midi_file.close()

    score1 = to_millisecs(opus)
    score2 = opus2score(score1)
    
    if MIDI_channel == 16: # Process all MIDI channels
      score = score2
    
    if MIDI_channel >= 0 and MIDI_channel <= 15: # Process only a selected single MIDI channel
      score = grep(score2, [MIDI_channel])
    
    if MIDI_channel == -1: # Process all channels except drums (except channel 9)
      score = grep(score2, [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15])   
    
    #print('Reading all MIDI events from the MIDI file...')
    while itrack < len(score):
      chords_list_track = []
      for event in score[itrack]:
        chords_list = []
        if event[0] == 'patch_change':
          patch = event[3] 
        if event[0] == 'note' and patch in MIDI_patch:
          if len(event) == 6: # Checking for bad notes...
              rec_event = event
              rec_event[1] = int((event[1] + voble) / time_denominator)
              rec_event[2] = int((event[2] + voble) / time_denominator)
              rec_event[5] = int(event[5] + voble)

              if transpose_all_notes_by_this_many_pitches != 0:
                rec_event[4] = abs(int(event[4] + transpose_all_notes_by_this_many_pitches))

              if flip_notes !=0:
                if flip_notes == 1:
                  rec_event[4] = abs(int(127 - event[4]))
                
                if flip_notes == -1:
                  rec_event[4] = abs(int(0 - event[4]))

              if randomize_notes !=0:
                rec_event[4] = abs(int(event[4] + randomize_notes))

              if randremove_notes !=0:
                rec_event[4] = abs(int(event[4] * randremove_notes * secrets.choice([0-randremove_notes, 0, randremove_notes])))

              events_matrix.append(rec_event)

              min_note = int(min(min_note, rec_event[4]))
              max_note = int(max(max_note, rec_event[4]))          
              
              ev += 1
      
      itrack +=1 # Going to next track...
  
    #print('Doing some heavy pythonic sorting...Please stand by...')

    #print('Removing zero pitches and zero velocities events')
    events_matrix1 = [i for i in events_matrix if i[4] > 0 and i[5] > 0] # removing zero pitches and zero velocities events
    events_matrix = events_matrix1
    events_matrix1 = []

    for event in events_matrix:
      seen = set()
      event1 = [x for x in event if x not in seen and not seen.add(x)]
      events_matrix1.append(event1)

    events_matrix = []
    events_matrix = events_matrix1 

    #print('Sorting input by start time...')
    events_matrix.sort(key=lambda x: x[1]) # Sorting input by start time

    #print('Grouping by start time. This will take a while...')
    values = set(map(lambda x:x[1], events_matrix)) # Non-multithreaded function version just in case

    groups = [[y for y in events_matrix if y[1]==x and len(y) == 6] for x in values] # Grouping notes into chords while discarting bad notes...
    
    chords_list1 = []
    #print('Removing single note/excessive events, sorting events by pitch, and creating a chords list...')
    for items in groups: 
      if len(items) >= minimum_number_of_notes_per_chord: # Removing single note events
        items.sort(reverse=True, key=lambda x: x[4]) # Sorting events by pitch
        chords_list1.append(items) # Creating final chords list

    #print('Removing duplicate pitches from chords and creating a final chords list...')
    chords_list = []
    chord = []
    chord1 = []
    chord2 = []

    for chord in chords_list1:
      seen = set()
      chord1 = [x for x in chord if x[4] not in seen and not seen.add(x[4])]
      chord2 = [x for x in chord1 if len(x) == 6] # Removing bad note events from chords
      chords_list.append(chord2)

    chords_list_track = [i for i in chords_list if i != []]

    chords_list = []
    chords_list.extend(chords_list_track)

    #print('Extracting melody...')
    melody_list = []
    
    #print('Sorting events...')
    for items in groups:
        items.sort(reverse=True, key=lambda x: x[4]) # Sorting events by pitch 
        melody_list.append(items) # Creating final chords list
    
    #print('Removing duplicates if any...')
    for item in melody_list:
        seen = set()
        mel = [x for x in item if x[1] not in seen and not seen.add(x[1])]
        melody1.extend(mel)
    
    #print('Removing bad notes if any...')    
    for item in melody1:
        if len(item) == 6:
          melody.append(item)
    
    #print('Final sorting by start time...')      
    melody.sort(reverse=False, key=lambda x: x[1]) # Sorting events by start time
      
    return chords_list, melody

###################################################################################

def Tegridy_Chords_Converter(chords_list, melody_list, song_name, melody_notes_in_chords=True):
  '''Tegridy Chords Coverter

  Inputs: Tegridy MIDI chords_list (as is)

          Tegridy MIDI melody_list (as is)

          Name of the song as plain string

          Include or exclude melody notes in each chord. Def. is to include.


  Outputs: Converted chords_list with melody_notes and song name

           Converted melody_list with song name

  Project Los Angeles
  Tegridy Code 2020'''

  temp_chords_list = []
  chords_list_final = []
  melody_list_final = []

  temp_chords_list = [[song_name, 0, 0, 0, 0, 0]]
  melody_list_final = [song_name, 0, 0, 0, 0, 0]

  debug = False

  for notez in melody_list:
    if melody_notes_in_chords:
      temp_chords_list.append([notez])
    melody_list_final.append(notez)
    for chord in chords_list:
      if notez[1] == chord[0][1]:
        temp_chords_list.append(chord[1:])
  
  '''# Gonna use a dic here to join chords by start-time :)
  record_dict = defaultdict(list)

  for chords in temp_chords_list:
    if len(chords) > 0:
      record_dict[chords[0][1]].extend(chords)

  temp_chords_list = list(record_dict.values())'''

  chords_list_final = []
  #print('Sorting chords notes by pitch/removing empty chords if any...')
  chords_list_final.append(temp_chords_list[0])
  for chordz in temp_chords_list[1:]:
    if len(chordz) > 0:
      if debug: print(chordz)
      chordz.sort(reverse=True, key=lambda x: x[4]) # Sorting events by pitch 
      chords_list_final.append(chordz) # Creating final chords list      

  chords_list_final[0] = [[song_name + '_with_' + str(len(chords_list_final)-1) + '_Chords', 0, 0, len(chords_list_final)-1, 0, 0]]
  melody_list_final[0] = [song_name + '_with_' + str(len(melody_list_final)-1) + '_Notes', 0, 0, len(melody_list_final)-1, 0, 0]
  chords_list_final.append([['song_end', chords_list_final[:-1][1], 0, len(chords_list_final)-1, 0, 1]])
  melody_list_final.append(['song_end', melody_list_final[:-1][1], 0, len(melody_list_final)-1, 0, 1])     
  first_song = False
    
  return chords_list_final, melody_list_final

###################################################################################

def Tegridy_MIDI_TXT_Processor(dataset_name,
                              converted_chords_list,
                              converted_melody_list,
                              simulate_velocity=False,
                              line_by_line_output=False,
                              represent_every_number_of_chords = 0,
                              chords_duration_multiplier = 1,
                              pad_chords_with_stops=False,
                              chords_beat_divider = 100):

    '''Tegridy MIDI to TXT Processor
     
     Input: Dataset name
            Tegridy MIDI chords_list and melody_list (as is)
            Simulate velocity or not
            Line-by-line switch (useful for the AI models tokenizers and other specific purposes)
            Represent events every so many steps. Def. is 0. == do not represent.
            Chords durations multiplier. Def. = 1
            Pad chords with timed rests or not. Helps with some NLP implementations
            Chords beat divider/denominator. This essentially creates a beat for AI models to keep in mind. Default is 100 = 10 beats per second.

     Output: TXT encoded MIDI events as plain txt/plain str
             Number of processed chords
             Number of bad/skipped chords (for whatever reason)

     Project Los Angeles
     Tegridy Code 2020'''

    debug = False

    song_chords_count = 0
    number_of_chords_recorded = 0
    number_of_bad_chords_recorded = 0
    chord_start_time = 0
    first_song = True

    rpz = 1

    previous_start_time = 0

    beat = 0

    if dataset_name != '':
      TXT_string = str(dataset_name)
    else:
      TXT_string = ''
    
    if line_by_line_output:
      TXT_string += '\n'
    else:
      TXT_string += ' '  

    for chord in tqdm.auto.tqdm(converted_chords_list):
      try:
        if chord[0][3] > 15:
          song_dur = int(chord[0][3])
        
        if len(chord) > 1:
          durs_chord = int(max(list(zip(*chord))[2]) * chords_duration_multiplier)
          chord_duration = durs_chord
        
        else:      
          chord_duration = int(chord[0][2] * chords_duration_multiplier)
          
        if simulate_velocity:
          chord_velocity = chord[0][4]
        else:  
          chord_velocity = chord[0][5]
        chord_start_time = chord[0][1] 
        if chord_duration == 0 and chord_velocity == 0:
          if not str(chord[0][0]) == 'song_end':
            if not first_song:
              TXT_string += 'SONG=END_' + str(song_chords_count) + '_Chords'
              if line_by_line_output:
                TXT_string += '\n'
              else:  
                TXT_string += ' '

              TXT_string += 'SONG=' + str(chord[0][0])
              if line_by_line_output:
                TXT_string += '\n'
              else:  
                TXT_string += ' '
              song_chords_count = 1 
                          
            else:  

              TXT_string += 'SONG=' + str(chord[0][0])
              if line_by_line_output:
                TXT_string += '\n'
              else:  
                TXT_string += ' '
              song_chords_count = 1  
            
          else:
              TXT_string += 'SONG=END_' + str(song_chords_count-1) + '_Chords'
              if line_by_line_output:
                TXT_string += '\n'
              else:  
                TXT_string += ' '             

        else:
          
          beat = int((abs(int(chord_start_time - previous_start_time))) / chords_beat_divider)

          if pad_chords_with_stops:
            if (chord_start_time - previous_start_time - 1) > 0:
              TXT_string += str(abs(int(chord_start_time - previous_start_time) - 1)) + '-' + str(0) + '-' + str(0) + '-' +str(0) + '-' + str(beat) + '-' + str(str(0) + '/' + str(0))
              if line_by_line_output:
                TXT_string += '\n'
              else:  
                TXT_string += ' '

          TXT_string += str(abs(int(chord_start_time - previous_start_time))) + '-' + str(chord_duration) + '-' + str(chord[0][3]) + '-' + str(chord_velocity) + '-' + str(beat)
          
          
          previous_start_time = chord_start_time
          
          for note in chord:
            TXT_string += '-' + str(note[4]) + '/' + str(chord_duration - int(note[2] * chords_duration_multiplier))
          
          # Representation of events
          if represent_every_number_of_chords > 0:
            if rpz == represent_every_number_of_chords:
              TXT_string += '#' + str(song_dur)
              rpz = 0    
          
          if line_by_line_output:
            TXT_string += '\n'
          else:  
            TXT_string += ' '
          
          if debug: print(chord)

          song_chords_count += 1
          number_of_chords_recorded += 1
          rpz += 1
          
      except:
        if debug: print('Bad chord. Skipping...')
        number_of_bad_chords_recorded += 1
        continue            

    return TXT_string, number_of_chords_recorded, number_of_bad_chords_recorded

###################################################################################

def Tegridy_TXT_MIDI_Processor(input_string, 
                              line_by_line_dataset = False,
                              dataset_MIDI_events_time_denominator = 10,
                              number_of_ticks_per_quarter = 425,
                              start_from_this_generated_event = 0,
                              remove_generated_silence_if_needed = False,
                              silence_offset_from_start = 75000,
                              simulate_velocity = False,
                              output_signature = 'TMIDI-TXT-MIDI',
                              list_of_MIDI_patches = [0, 24, 32, 40, 42, 46, 56, 71, 73, 0, 0, 0, 0, 0, 0, 0]):

    '''Tegridy TXT to MIDI Processor
     
     Input: Input TXT string in the TMIDI-TXT format
            Input is line-by-line or one-line
            Used dataset time denominator
            Number of ticks per quater for output MIDI
            Start from this input event (skip this many from start)
            Is there a generated silence or not
            Silence offset in MIDI ticks from start
            Simulate velocity (V = max(Pitch))
            Output MIDI signature
            List of 16 desired MIDI patch numbers for the output MIDI. Def. is MuseNet compatible patch list.

     Output: NOTE: For now only 1st recorded TXT performance converted to MIDI.
             Raw/binary MIDI data that can be recorded to a file with standard python functions.
             Detected number of input notes
             Recorded number of output notes
             Detailed created MIDI stats in the MIDI.py module format (MIDI.score2stats)

     Project Los Angeles
     Tegridy Code 2020'''

    debug = False

    if line_by_line_dataset:
      input_string = input_string.split() # for new datasets
    else:
      input_string = input_string.split(' ') # for compatibility/legacy datasets
    if debug: print(input_string)


    i=0
    z=1

    notes_specs = []
    song_name = ''
    previous_chord_start_time = 0
    number_of_notes_recorded = 0
    zero_marker = True
    song_header = []
    song_score = []

    start_time = 0
    duration = 0

    print('Converting TXT to MIDI. Please wait...')
    for i in range(len(input_string)):
      if input_string[i].split('=END_')[0] == 'SONG':
        break
        #TODO Record all perfomances (even incomplete ones) as separate tracks in output MIDI

      if input_string[i].split('=')[0] == 'SONG':
        try:
          song_name = input_string[i].split('=')[1]
          song_header.append(['track_name', 0, song_name])
          duration = 1
          continue
        except:
          print('Unknown Song name format', song_name)
          duration = 1
          continue
        
      if duration != 0: #Skipping rests

        try:
          start_time += int(input_string[i].split('-')[0]) * dataset_MIDI_events_time_denominator
          duration = int(input_string[i].split('-')[1]) * dataset_MIDI_events_time_denominator 
          channel = int(input_string[i].split('-')[2])
          velocity = int(input_string[i].split('-')[3])
        except:
          print('Unknown Chord:', input_string[i])
        
        try:
          for x in range(len(str(input_string[i]).split('-')[5:])):
            notes_specs, dur = str(input_string[i].split('-')[5:][x]).split('/')
            duration = duration - int(dur)
            simulated_velocity = int(notes_specs)
            if simulate_velocity:
              song_score.append(['note', 
                                  int(start_time), #Start Time
                                  int(duration), #Duration
                                  int(channel), #Channel
                                  int(notes_specs), #Note
                                  int(simulated_velocity)]) #Velocity              
              number_of_notes_recorded += 1
            else:  
              song_score.append(['note', 
                                  int(start_time), #Start Time
                                  int(duration), #Duration
                                  int(channel), #Channel
                                  int(notes_specs), #Note
                                  int(velocity)]) #Velocity              
              number_of_notes_recorded += 1
        except:
          print("Unknown Notes: " + input_string[i])
          continue

    if remove_generated_silence_if_needed:
      song_score1 = []
      for note in song_score[start_from_this_generated_event:]:
        note1 = note
        note1[1] = note[1] - silence_offset_from_start
        song_score1.append(note1)
      song_score = song_score1  

    output_header = [number_of_ticks_per_quarter, [['track_name', 0, bytes(output_signature, 'utf-8')]]] 
                                                  
    patch_list = [['patch_change', 0, 0, list_of_MIDI_patches[0]], 
                ['patch_change', 0, 1, list_of_MIDI_patches[1]],
                ['patch_change', 0, 2, list_of_MIDI_patches[2]],
                ['patch_change', 0, 3, list_of_MIDI_patches[3]],
                ['patch_change', 0, 4, list_of_MIDI_patches[4]],
                ['patch_change', 0, 5, list_of_MIDI_patches[5]],
                ['patch_change', 0, 6, list_of_MIDI_patches[6]],
                ['patch_change', 0, 7, list_of_MIDI_patches[7]],
                ['patch_change', 0, 8, list_of_MIDI_patches[8]],
                ['patch_change', 0, 9, list_of_MIDI_patches[9]],
                ['patch_change', 0, 10, list_of_MIDI_patches[10]],
                ['patch_change', 0, 11, list_of_MIDI_patches[11]],
                ['patch_change', 0, 12, list_of_MIDI_patches[12]],
                ['patch_change', 0, 13, list_of_MIDI_patches[13]],
                ['patch_change', 0, 14, list_of_MIDI_patches[14]],
                ['patch_change', 0, 15, list_of_MIDI_patches[15]]]

    output_song = song_header + song_score[start_from_this_generated_event:]
    output = output_header + [patch_list + output_song]

    midi_data = score2midi(output)
    detailed_MIDI_stats = score2stats(output)

    return midi_data, len(input_string), number_of_notes_recorded, detailed_MIDI_stats

###################################################################################

def Tegridy_TXT_to_INT_Processor(input_TXT_string):

    '''Tegridy TXT to Intergers Processor
     
    Input: Input TXT string in the TMIDI-TXT format

    Output: List of intergers
            Decoding dictionary


    Project Los Angeles
    Tegridy Code 2020'''

    # get vocabulary set
    words = sorted(tuple(set(input_TXT_string.split('\n'))))
    n = len(words)

    # create word-integer encoder/decoder
    word2int = dict(zip(words, list(range(n))))
    decoding_dictionary = dict(zip(list(range(n)), words))

    # encode all words in the string into integers
    output_INT_list = [word2int[word] for word in input_TXT_string.split('\n')]
    
    return output_INT_list, decoding_dictionary

###################################################################################

def Tegridy_INT_to_TXT_Processor(input_INT_list, decoding_dictionary):

    '''Tegridy Intergers to TXT Processor
     
    Input: List of intergers in TMIDI-TXT-INT format
          Decoding dictionary in TMIDI-TXT-INT format

    Output: Decoded TXT string in TMIDI-TXT format

    Project Los Angeles
    Tegridy Code 2020'''

    output_TXT_string = '\n'.join(decoding_dictionary[int_] for int_ in input_INT_list)
    
    return output_TXT_string

###################################################################################

def Tegridy_TXT_to_INT_Converter(input_TXT_string, line_by_line_INT_string=True, max_INT = 0):

    '''Tegridy TXT to Intergers Converter
     
    Input: Input TXT string in the TMIDI-TXT format

           Type of output TXT INT string: line-by-line or one long string

           Maximum absolute integer to process. Maximum is inclusive 
           Default = process all integers. This helps to remove outliers/unwanted ints

    Output: List of pure intergers
            String of intergers in the specified format: line-by-line or one long string
            Number of processed integers
            Number of skipped integers
    
    Project Los Angeles
    Tegridy Code 2021'''

    print('Tegridy TXT to Intergers Converter')

    output_INT_list = []

    npi = 0
    nsi = 0

    TXT_List = list(input_TXT_string)
    for char in TXT_List:
      if max_INT != 0:
        if abs(ord(char)) <= max_INT:
          output_INT_list.append(ord(char))
          npi += 1
        else:
          nsi += 1  
      else:
        output_INT_list.append(ord(char))
        npi += 1    
    
    if line_by_line_INT_string:
      output_INT_string = '\n'.join([str(elem) for elem in output_INT_list])
    else:
      output_INT_string = ' '.join([str(elem) for elem in output_INT_list])  

    print('Converted TXT to INTs:', npi, ' / ', nsi)

    return output_INT_list, output_INT_string, npi, nsi

###################################################################################

def Tegridy_INT_to_TXT_Converter(input_INT_list):

    '''Tegridy Intergers to TXT Converter
     
    Input: List of intergers in TMIDI-TXT-INT format
    Output: Decoded TXT string in TMIDI-TXT format
    Project Los Angeles
    Tegridy Code 2020'''

    output_TXT_string = ''

    for i in input_INT_list:
      output_TXT_string += chr(int(i))
    
    return output_TXT_string

###################################################################################

def Tegridy_INT_String_to_TXT_Converter(input_INT_String, line_by_line_input=True):

    '''Tegridy Intergers String to TXT Converter
     
    Input: List of intergers in TMIDI-TXT-INT-String format
    Output: Decoded TXT string in TMIDI-TXT format
    Project Los Angeles
    Tegridy Code 2020'''
    
    print('Tegridy Intergers String to TXT Converter')

    if line_by_line_input:
      input_string = input_INT_String.split('\n')
    else:
      input_string = input_INT_String.split(' ')  

    output_TXT_string = ''

    for i in input_string:
      try:
        output_TXT_string += chr(abs(int(i)))
      except:
        print('Bad note:', i)
        continue  
    
    print('Done!')

    return output_TXT_string

###################################################################################

def Tegridy_TXT_Reducer(input_string, 
                        line_by_line_input_dataset = True,
                        line_by_line_output_dataset = True,
                        include_MIDI_channels=True,
                        include_notes_velocities=True,
                        char_encoding_offset = 30,
                        include_beat = False):

    '''Tegridy TXT Reducer
     
    Input: Input TXT string in the TMIDI-TXT format
           Input dataset type
           Output dataset type
           Dataset MIDI events time divider/denominator
           Reduce MIDI channels or not (False = savings on AI token memory)
           Reduce Note's velocities or not (False = savings on AI token memory)
           Char encoding offset. This is to prevent ambiguity with sys chars like \n.

    Output: Reduced TXT string in UTF-8 format
            Number of recorded notes

    Project Los Angeles
    Tegridy Code 2020'''

    debug = False

    if line_by_line_input_dataset:
      input_string = input_string.split() # for general use
    else:
      input_string = input_string.split(' ') # for some specific purposes
    if debug: print(input_string)


    i=0
    z=1

    notes_specs = []
    song_name = ''
    previous_chord_start_time = 0
    number_of_notes_recorded = 0
    zero_marker = True
    song_header = []
    song_score = []

    start_time = 0

    Output_TXT_string = ''

    print('Reducing TXT. Please wait...')
    for i in tqdm.auto.tqdm(range(len(input_string))):
      
      if input_string[i].split('=')[0] == 'DATASET':
        Output_TXT_string += input_string[i] + '\n'
        continue

      if input_string[i].split('=')[0] == 'SONG':
        if input_string[i].split('=')[1][0:4] != 'END_':
          if line_by_line_output_dataset:
            Output_TXT_string += input_string[i] + '\n'
            continue
          else:
            Output_TXT_string += input_string[i] + ' '  
            continue
        else:
          Output_TXT_string += input_string[i] + '\n'
          continue
        
      try:
        start_time = int(input_string[i].split('-')[0])
        duration = int(input_string[i].split('-')[1])
        channel = int(input_string[i].split('-')[2])
        velocity = int(input_string[i].split('-')[3])
        beat = int(input_string[i].split('-')[4])
      except:
        print('Unknown Chord:', input_string[i])
      
      try:
        chars = ''
        for x in range(len(str(input_string[i]).split('-')[5:])):
          notes_specs, dur = str(input_string[i].split('-')[5:][x]).split('/')
          dura = duration - int(dur)
          
          chars += chr(int(start_time)+char_encoding_offset) #Start Time
          chars += chr(int(dura)+char_encoding_offset) #Duration
          
          if include_beat == True and include_MIDI_channels == False:
            chars += chr(int(beat)+char_encoding_offset) #Beat

          if include_MIDI_channels == True and include_beat == False:
            chars += chr(int(channel)+char_encoding_offset) #Channel

          chars += chr(int(notes_specs)+char_encoding_offset) #Note

          if include_notes_velocities:
            chars += chr(int(velocity)+char_encoding_offset) #Velocity
 
          number_of_notes_recorded += 1
      except:
        print("Unknown Notes: " + input_string[i])
        continue
      if len(chars) > 0:
        Output_TXT_string += chars
        if line_by_line_output_dataset:
          Output_TXT_string += '\n'
        else:
          Output_TXT_string += ' '  

    print('Task complete! Enjoy :)')
       
    return Output_TXT_string, number_of_notes_recorded

###################################################################################

def Tegridy_Reduced_TXT_to_Notes_Converter(Reduced_TXT_String,
                                          line_by_line_dataset = True,
                                          has_MIDI_channels = True,
                                          has_velocities = True,
                                          dataset_MIDI_events_time_denominator = 10,
                                          char_encoding_offset = 30,
                                          save_only_first_composition = True,
                                          dataset_includes_beat = False):
                                                            
    '''Tegridy Reduced TXT to Notes Converter
     
    Input: Input TXT string in the Reduced TMIDI-TXT format
           Input dataset type
           Dataset was encoded with MIDI channels info or not
           Dataset was encoded with note's velocities info or not
           Used dataset time denominator/divider. It must match or the timings will be off.
           Char encoding offset. This is to prevent ambiguity with sys chars like \n.

    Output: List of notes in MIDI.py Score format (TMIDI SONG format)
            First SONG= occurence (song name usually)

    Project Los Angeles
    Tegridy Code 2020'''

    print('Tegridy Reduced TXT to Notes Converter')
    print('Converting Reduced TXT to Notes list...Please wait...')

    song_name = ''

    if line_by_line_dataset:
      input_string = Reduced_TXT_String.split('\n')
    else:
      input_string = Reduced_TXT_String.split(' ')
    
    if line_by_line_dataset:
      name_string = Reduced_TXT_String.split('\n')[0].split('=')
    else:
      name_string = Reduced_TXT_String.split(' ')[0].split('=')

    if name_string[0] == 'SONG':
      song_name = name_string[1]

    output_list = []
    st = 0

    for i in range(2, len(input_string)-1):
      
      if save_only_first_composition:
        if input_string[i].split('=')[0] == 'SONG':
          if input_string[i].split('=')[1][0:4] != 'END_' :
            song_name = name_string[1]
            continue
          else:
            break

      try:
        istring = input_string[i]

        if has_MIDI_channels==False and has_velocities==False:
          step = 3

        if has_MIDI_channels==True and has_velocities==False:
          step = 4          
        
        if has_MIDI_channels==False and has_velocities==True:
          step = 4  
        
        if has_MIDI_channels==True and has_velocities==True:
          step = 5

        if dataset_includes_beat:
          step = step + 1

        dur = (ord(istring[1]) - char_encoding_offset) * dataset_MIDI_events_time_denominator


        if dur != 0 and int(ord(istring[3]) - char_encoding_offset) != 0: #Check for rests/zero notes (we are skipping them)

          st += int(ord(istring[0]) - char_encoding_offset) * dataset_MIDI_events_time_denominator

          for s in range(0, len(istring), step):
              if has_MIDI_channels==True and has_velocities==True:
                if step >= 4 and len(istring) > 3:
                      out = []       
                      out.append('note')

                      out.append(st) # Start time
                      out.append((ord(istring[s+1]) - char_encoding_offset) * dataset_MIDI_events_time_denominator) # Duration
                      out.append(ord(istring[s+2]) - char_encoding_offset) # Channel
                      out.append(ord(istring[s+3]) - char_encoding_offset) # Pitch
                      out.append(ord(istring[s+4]) - char_encoding_offset) # Velocity

                      output_list.append(out)
              
              if has_MIDI_channels==True and has_velocities==False:
                if step >= 3 and len(istring) > 2:
                      out = []       
                      out.append('note')

                      out.append(st) # Start time
                      out.append((ord(istring[s+1]) - char_encoding_offset) * dataset_MIDI_events_time_denominator) # Duration
                      out.append(ord(istring[s+2]) - char_encoding_offset) # Channel
                      out.append(ord(istring[s+3]) - char_encoding_offset) # Pitch
                      if s == 0:
                        sim_vel = ord(istring[s+3]) - char_encoding_offset
                      out.append(sim_vel) # Simulated Velocity (= highest note's pitch)
                      output_list.append(out)

              if has_velocities==True and has_MIDI_channels==False:
                if step >= 3 and len(istring) > 2:
                      out = []       
                      out.append('note')
                      
                      out.append(st) # Start time
                      out.append((ord(istring[s+1]) - char_encoding_offset) * dataset_MIDI_events_time_denominator) # Duration
                      out.append(int(0)) # Simulated Channel (Defaulting to Channel 0)
                      out.append(ord(istring[s+3]) - char_encoding_offset) # Pitch
                      out.append(ord(istring[s+4]) - char_encoding_offset) # Velocity

                      output_list.append(out)

              if has_MIDI_channels==False and has_velocities==False:
                if step >= 2 and len(istring) > 1:
                      out = []       
                      out.append('note')

                      out.append(st) # Start time
                      out.append((ord(istring[s+1]) - char_encoding_offset) * dataset_MIDI_events_time_denominator) # Duration
                      out.append(int(0)) # Simulated Channel (Defaulting to Channel 0)
                      out.append(ord(istring[s+3]) - char_encoding_offset) # Pitch
                      if s == 0:
                        sim_vel = ord(istring[s+3]) - char_encoding_offset
                      out.append(sim_vel) # Simulated Velocity (= highest note's pitch)
                      output_list.append(out)
      except:
        print('Bad note string:', istring)
        continue

    print('Task complete! Enjoy! :)')

    return output_list, song_name

###################################################################################

def Tegridy_SONG_to_MIDI_Converter(SONG,
                                  output_signature = 'Tegridy TMIDI Module', 
                                  track_name = 'Composition Track',
                                  number_of_ticks_per_quarter = 425,
                                  list_of_MIDI_patches = [0, 24, 32, 40, 42, 46, 56, 71, 73, 0, 0, 0, 0, 0, 0, 0],
                                  output_file_name = 'TMIDI-Composition',
                                  text_encoding='ISO-8859-1'):

    '''Tegridy SONG to MIDI Converter
     
    Input: Input SONG in TMIDI SONG/MIDI.py Score format
           Output MIDI Track 0 name / MIDI Signature
           Output MIDI Track 1 name / Composition track name
           Number of ticks per quarter for the output MIDI
           List of 16 MIDI patch numbers for output MIDI. Def. is MuseNet compatible patches.
           Output file name w/o .mid extension.
           Optional text encoding if you are working with text_events/lyrics. This is especially useful for Karaoke. Please note that anything but ISO-8859-1 is a non-standard way of encoding text_events according to MIDI specs.

    Output: MIDI File
            Detailed MIDI stats

    Project Los Angeles
    Tegridy Code 2020'''                                  

    print('Converting to MIDI. Please stand-by...')
    
    output_header = [number_of_ticks_per_quarter, 
                    [['track_name', 0, bytes(output_signature, text_encoding)]]]                                                    

    patch_list = [['patch_change', 0, 0, list_of_MIDI_patches[0]], 
                    ['patch_change', 0, 1, list_of_MIDI_patches[1]],
                    ['patch_change', 0, 2, list_of_MIDI_patches[2]],
                    ['patch_change', 0, 3, list_of_MIDI_patches[3]],
                    ['patch_change', 0, 4, list_of_MIDI_patches[4]],
                    ['patch_change', 0, 5, list_of_MIDI_patches[5]],
                    ['patch_change', 0, 6, list_of_MIDI_patches[6]],
                    ['patch_change', 0, 7, list_of_MIDI_patches[7]],
                    ['patch_change', 0, 8, list_of_MIDI_patches[8]],
                    ['patch_change', 0, 9, list_of_MIDI_patches[9]],
                    ['patch_change', 0, 10, list_of_MIDI_patches[10]],
                    ['patch_change', 0, 11, list_of_MIDI_patches[11]],
                    ['patch_change', 0, 12, list_of_MIDI_patches[12]],
                    ['patch_change', 0, 13, list_of_MIDI_patches[13]],
                    ['patch_change', 0, 14, list_of_MIDI_patches[14]],
                    ['patch_change', 0, 15, list_of_MIDI_patches[15]],
                    ['track_name', 0, bytes(track_name, text_encoding)]]

    output = output_header + [patch_list + SONG]

    midi_data = score2midi(output, text_encoding)
    detailed_MIDI_stats = score2stats(output)

    with open(output_file_name + '.mid', 'wb') as midi_file:
        midi_file.write(midi_data)
        midi_file.close()
    
    print('Done! Enjoy! :)')
    
    return detailed_MIDI_stats

###################################################################################

def Tegridy_Karaoke_MIDI_to_Reduced_TXT_Processor(Karaoke_MIDI_file, 
                                                  karaoke_language_encoding = 'ISO-8859-1',
                                                  char_encoding_offset = 30):

    '''Tegridy Karaoke MIDI to Reduced TXT Processor
     
    Input: Karaoke MIDI file. Must be a Karaoke MIDI or the processor will not work properly.
           
           Karaoke language encoding. Please see official encoding list for your language. 
           https://docs.python.org/3/library/codecs.html#standard-encodings
           Please note that anything but ISO-8859-1 is a non-standard way of encoding text_events according to MIDI specs.
           
           Char encoding offset to prevent ambiguity with sys chars like \n. 
           This may need to be adjusted for languages other than English.

    Output: Line-by-line reduced TXT string
            Number of processed MIDI events from the Karaoke MIDI file
            Number of recorded Karaoke events in the TXT string
            All recorded Pitches/Words of the given KarMIDI file as a list
            All recorded words of the given KarMIDI file as a string

    Project Los Angeles
    Tegridy Code 2021'''

    events_list = []
    events_matrix = []

    MIDI_ev = 0
    KAR_ev = 0

    itrack = 1

    tst = 0

    output_string = ''

    midi_file = open(Karaoke_MIDI_file, 'rb')
    
    try:
      opus = midi2opus(midi_file.read())
    
    except:
      print('Problematic file. Skipping...')
      print('Skipped file name:', Karaoke_MIDI_file)
      midi_file.close()
      return output_string, MIDI_ev, KAR_ev
          
    midi_file.close()

    score1 = to_millisecs(opus)
    score = opus2score(score1)

    #print('Reading all MIDI events from the MIDI file...')
    while itrack < len(score):
      for event in score[itrack]:
        if event[0] == 'text_event':
          tst = 0
          txt = ''
          tst = event[1]
          txt = event[2]
          
        if event[0] == 'note' and event[1] == tst:
          evt = copy.deepcopy(event)
          evt.extend([''])
          evt[6] = txt
          events_list.append(evt)       
        
        MIDI_ev += 1
      
      itrack +=1 # Going to next track...

    evt = sorted(events_list, key=itemgetter(1)) # Sorting by start time
    groups = [list(g) for _,g in groupby(evt,itemgetter(1))] # Grouping by start time

    events_matrix.extend(groups)

    f_matrix = []
    final_matrix = []
    for items in events_matrix: 
      if len(items) > 0: # Removing single note events
        it = []
        
        it.extend(items)
        it.sort(reverse=True, key=lambda x: x[4]) # Sorting events by pitch
        f_matrix.append(it[0]) 

    ptime = 0
    time = 0
    delta = 0
    output_song = []

    for n in range(len(f_matrix)-1):
      no = copy.deepcopy(f_matrix[n])

      no[1] = int(delta / 10)
      no[2] = int(no[2] / 10)
      no[5] = no[4]

      ptime = f_matrix[n][1]
      time = f_matrix[n+1][1]

      delta = abs(time-ptime)    

      output_song.append(no)

    output_string = ''
    all_words = ''
    pitches_words_list = []

    for note in output_song:
      if note[1] < 250 and note[2] < 250:
        if note[1] >= 0 and len(note[6]) > 0: 
          output_string += chr(note[1] + char_encoding_offset)
          output_string += chr(note[2] + char_encoding_offset)
          output_string += chr(note[4] + char_encoding_offset)
          output_string += '='
          word = str(note[6].decode(karaoke_language_encoding, 'replace')).replace('/', '').replace(' ', '')
          output_string += word
          output_string += '\n'
          all_words += word + ' '
          pitches_words_list.append([note[4], word])
          KAR_ev += 1

    return output_string, MIDI_ev, KAR_ev, pitches_words_list, all_words  

###################################################################################

def Tegridy_Karaoke_TXT_to_MIDI_Processor(Karaoke_TXT_String,
                                          text_encoding='ISO-8859-1',
                                          char_encoding_offset = 30):

    '''Tegridy Karaoke TXT to MIDI Processor
        
    Input: Karaoke Reduced TXT String in TMIDI Karaoke Reduced TXT format
            
           Karaoke language encoding. Please see official encoding list for your language. 
           https://docs.python.org/3/library/codecs.html#standard-encodings
           Please note that anything but ISO-8859-1 is a non-standard way of encoding text_events according to MIDI specs.
            
           Char encoding offset to prevent ambiguity with sys chars like \n. 
           This may need to be adjusted for languages other than English.

    Output: Inferred song name (from the first line of the input TXT string)
            Song (notes list in MIDI.py score format) that you can write to MIDI file with TMIDI Song to MIDI converter.
            All song's lyrics as one TXT string (this is for eval/display purposes mostly)
            Number of recorded Karaoke events in the output song

    Project Los Angeles
    Tegridy Code 2021'''    
    
    print('Tegridy Karaoke TXT to MIDI Processor')
    print('Converting Karaoke TXT to MIDI. Please wait...')

    o_str = Karaoke_TXT_String.split('\n')

    song_name = o_str[0]

    song = []

    lyrics_text = ''

    ptime = 0

    KAR_ev = 0

    for st in o_str:

      note = ['note', 0, 0, 0, 0, 0]
      text = ['text_event', 0, '']

      if len(st.split('=')[0]) == 3 and len(st) > 4:

        note[1] = ptime * 10
        note[2] = (ord(st.split('=')[0][1]) - char_encoding_offset) * 10
        note[4] = (ord(st.split('=')[0][2]) - char_encoding_offset)
        note[5] = (ord(st.split('=')[0][2]) - char_encoding_offset)

        text[1] = ptime * 10
        text[2] = str(st.split('=')[1])

        ptime += ord(st.split('=')[0][0]) - char_encoding_offset

        song.append(note)
        song.append(text)

        lyrics_text += str(st.split('=')[1]) + ' '

        KAR_ev += 1

    print('Task complete! Enjoy! :)')

    return song_name, song, lyrics_text, KAR_ev

###################################################################################
#
# Tegridy helper functions
#
###################################################################################

def Tegridy_File_Time_Stamp(input_file_name='File_Created_on_', ext = ''):

  '''Tegridy File Time Stamp
     
  Input: Full path and file name without extention
         File extension
          
  Output: File name string with time-stamp and extension (time-stamped file name)

  Project Los Angeles
  Tegridy Code 2021'''       

  print('Time-stamping output file...')

  now = ''
  now_n = str(datetime.now())
  now_n = now_n.replace(' ', '_')
  now_n = now_n.replace(':', '_')
  now = now_n.replace('.', '_')
      
  fname = input_file_name + str(now) + ext

  return(fname)

###################################################################################

def Tegridy_TXT_Dataset_File_Writer(input_file_name='TMIDI_TXT_Dataset', 
                                    ext = '', 
                                    TXT_String = ''):

  '''Tegridy TXT Dataset File Writer
     
  Input: Full path and file name without extention
         File extension
         Dataset as TXT string
          
  Output: Named TXT Dataset File

  Project Los Angeles
  Tegridy Code 2021'''

  print('Tegridy TXT Dataset File Writer')

  full_path_to_TXT_dataset = input_file_name + ext
  
  if os.path.exists(full_path_to_TXT_dataset):
    os.remove(full_path_to_TXT_dataset)
    print('Removing old Dataset...')
  else:
    print("Creating new Dataset file...")

  print('Writing dataset to a file...Please wait...')
  f = open(full_path_to_TXT_dataset, 'wb')
  f.write(TXT_String.encode('utf-8', 'replace'))
  f.close()
  print('Dataset was saved as:', full_path_to_TXT_dataset)
  print('Task complete! Enjoy :)')

###################################################################################

def Tegridy_Pickle_File_Writer(Data, input_file_name='TMIDI_Pickle_File'):

  '''Tegridy Pickle File Writer
     
  Input: Data to write (I.e. a list)
         Full path and file name without extention
         
  Output: Named Pickle file

  Project Los Angeles
  Tegridy Code 2021'''

  print('Tegridy Pickle File Writer')

  full_path_to_output_dataset_to = input_file_name + '.pickle'

  if os.path.exists(full_path_to_output_dataset_to):
    os.remove(full_path_to_output_dataset_to)
    print('Removing old Dataset...')
  else:
    print("Creating new Dataset file...")

  with open(full_path_to_output_dataset_to, 'wb') as filehandle:
    # store the data as binary data stream
    pickle.dump(Data, filehandle, protocol=pickle.HIGHEST_PROTOCOL)

  print('Dataset was saved as:', full_path_to_output_dataset_to)
  print('Task complete. Enjoy! :)')

###################################################################################

def Tegridy_Pickle_File_Loader(input_file_name='TMIDI_Pickle_File', ext='.pickle'):

  '''Tegridy Pickle File Loader
     
  Input: Full path and file name without extention
         File extension if different from default .pickle
       
  Output: Chords list in TMIDI MIDI Processor format
          Melody list in TMIDI MIDI Processor format

  Project Los Angeles
  Tegridy Code 2021'''

  print('Tegridy Pickle File Loader')
  print('Loading the pickle file. Please wait...')

  dataset = open(input_file_name + ext, "rb")

  chords_list_f, melody_list_f = pickle.load(dataset)

  dataset.close()

  print('Loading complete.')
  print('Number of MIDI chords recorded:', len(chords_list_f))
  print('The longest chord:', len(max(chords_list_f, key=len)), 'notes') 
  print(max(chords_list_f, key=len))
  print('Number of recorded melody events:', len(melody_list_f))
  print('First melody event:', melody_list_f[0], 'Last Melody event:', melody_list_f[-1])
  print('Total number of MIDI events recorded:', len(chords_list_f))
  print('Task complete. Enjoy! :)')

  return chords_list_f, melody_list_f

def Tegridy_Any_Pickle_File_Loader(input_file_name='TMIDI_Pickle_File', ext='.pickle'):

  '''Tegridy Pickle File Loader
     
  Input: Full path and file name without extention
         File extension if different from default .pickle
       
  Output: Standard Python 3 unpickled data object

  Project Los Angeles
  Tegridy Code 2021'''

  print('Tegridy Pickle File Loader')
  print('Loading the pickle file. Please wait...')

  with open(input_file_name + ext, 'rb') as pickle_file:
    content = pickle.load(pickle_file)

  return content

###################################################################################

def Tegridy_Karaoke_Pitches_Words_List_to_CSV_Writer(pitches_words_list, file_name='pitches_words.csv'):
    
    '''Tegridy Karaoke Pitches Words List to CSV Writer
      
    Input: Pitches/Words list in TMIDI Karaoke MIDI to TXT Converter format
           Desired full output CSV file name with extension
        
    Output: CSV file with all Pitches/Words that were in the input pitches/words list

    Project Los Angeles
    Tegridy Code 2021'''
    
    print('Tegridy Karaoke Pitches/Words CSV Writer')
    print('Starting up...')
    print('Grouping input pitches/words list...Please stand by...')
    values = set(map(lambda x:x[0], pitches_words_list))

    groups = [[y for y in pitches_words_list if y[0]==x] for x in values]
    
    print('Preparing final CSV list...')

    final_list = {}

    for g in groups:
      pitch = g[0][0]
      f_list = []
      for value in g:
        if value[1] not in f_list:
          f_list.append(value[1])
      final_list[pitch] = f_list

    print('Writing CSV file to disk...')
    with open(file_name,'w',newline='') as f:
      w = csv.writer(f)
      w.writerow(['pitch','words'])
      for key,items in final_list.items():
        w.writerow([key, ' '.join(sorted(items))])

    print('Task complete! Enjoy :)')

###################################################################################

# TMIDI 2.0 Code is below

###################################################################################


def Optimus_MIDI_TXT_Processor(MIDI_file, 
                              line_by_line_output=True, 
                              chordify_TXT=False,
                              dataset_MIDI_events_time_denominator=1,
                              output_velocity=True,
                              output_MIDI_channels = False, 
                              MIDI_channel=0, 
                              MIDI_patch=[0, 1], 
                              char_offset = 30000,
                              transpose_by = 0,
                              flip=False, 
                              melody_conditioned_encoding=False,
                              melody_pitch_baseline = 0,
                              number_of_notes_to_sample = -1,
                              sampling_offset_from_start = 0,
                              karaoke=False,
                              karaoke_language_encoding='utf-8',
                              song_name='Song',
                              perfect_timings=False,
                              musenet_encoding=False,
                              transform=0):

    '''Project Los Angeles
       Tegridy Code 2021'''
  
###########

    debug = False

    ev = 0

    chords_list_final = []
    chords_list = []
    events_matrix = []
    melody = []
    melody1 = []

    itrack = 1

    min_note = 0
    max_note = 0
    ev = 0
    patch = 0

    score = []
    rec_event = []

    txt = ''
    txtc = ''
    chords = []
    melody_chords = []

    karaoke_events_matrix = []
    karaokez = []

    sample = 0
    start_sample = 0

    bass_melody = []

###########    

    def list_average(num):
      sum_num = 0
      for t in num:
          sum_num = sum_num + t           

      avg = sum_num / len(num)
      return avg

###########

    #print('Loading MIDI file...')
    midi_file = open(MIDI_file, 'rb')
    if debug: print('Processing File:', file_address)
    
    try:
      opus = midi2opus(midi_file.read())
    
    except:
      print('Problematic MIDI. Skipping...')
      print('File name:', MIDI_file)
      midi_file.close()
      return txt, melody, chords
         
    midi_file.close()

    score1 = to_millisecs(opus)
    score2 = opus2score(score1)

    # score2 = opus2score(opus) # TODO Improve score timings when it will be possible.
    
    if MIDI_channel == 16: # Process all MIDI channels
      score = score2
    
    if MIDI_channel >= 0 and MIDI_channel <= 15: # Process only a selected single MIDI channel
      score = grep(score2, [MIDI_channel])
    
    if MIDI_channel == -1: # Process all channels except drums (except channel 9)
      score = grep(score2, [0, 1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15])   
    
    #print('Reading all MIDI events from the MIDI file...')
    while itrack < len(score):
      for event in score[itrack]:
        
        if perfect_timings:
          if event[0] == 'note':
            event[1] = round(event[1], -1)
            event[2] = round(event[2], -1)

        if event[0] == 'text_event' or event[0] == 'lyric' or event[0] == 'note':
          karaokez.append(event)
        
        if event[0] == 'text_event' or event[0] == 'lyric':
          try:
            event[2] = str(event[2].decode(karaoke_language_encoding, 'replace')).replace('/', '').replace(' ', '').replace('\\', '')
          except:
            event[2] = str(event[2]).replace('/', '').replace(' ', '').replace('\\', '')
            continue
          karaoke_events_matrix.append(event)

        if event[0] == 'patch_change':
          patch = event[3]

        if event[0] == 'note' and patch in MIDI_patch:
          if len(event) == 6: # Checking for bad notes...
              eve = copy.deepcopy(event)
              
              eve[1] = int(event[1] / dataset_MIDI_events_time_denominator)
              eve[2] = int(event[2] / dataset_MIDI_events_time_denominator)
              
              eve[4] = int(event[4] + transpose_by)
              
              if flip == True:
                eve[4] = int(127 - (event[4] + transpose_by)) 
              
              if number_of_notes_to_sample > -1:
                if sample <= number_of_notes_to_sample:
                  if start_sample >= sampling_offset_from_start:
                    events_matrix.append(eve)
                    sample += 1
                    ev += 1
                  else:
                    start_sample += 1

              else:
                events_matrix.append(eve)
                ev += 1
                start_sample += 1
                
      itrack +=1 # Going to next track...

    #print('Doing some heavy pythonic sorting...Please stand by...')

    fn = os.path.basename(MIDI_file)
    song_name = song_name.replace(' ', '_').replace('=', '_').replace('\'', '-')
    if song_name == 'Song':
      sng_name = fn.split('.')[0].replace(' ', '_').replace('=', '_').replace('\'', '-')
      song_name = sng_name
    
    txt += 'SONG=' + song_name + '_with_' + str(len(events_matrix)-1) + '_notes'
    txtc += 'SONG=' + song_name + '_with_' + str(len(events_matrix)-1) + '_notes'

    if line_by_line_output:
      txt += chr(10)
      txtc += chr(10)
    else:
      txt += chr(32)
      txtc += chr(32)

    #print('Sorting input by start time...')
    events_matrix.sort(key=lambda x: x[1]) # Sorting input by start time      
    
    chords.extend(events_matrix)
    #print(chords)

    #print('Extracting melody...')
    melody_list = []

    #print('Grouping by start time. This will take a while...')
    values = set(map(lambda x:x[1], events_matrix)) # Non-multithreaded function version just in case

    groups = [[y for y in events_matrix if y[1]==x and len(y) == 6] for x in values] # Grouping notes into chords while discarting bad notes...
  
    #print('Sorting events...')
    for items in groups:
        
        items.sort(reverse=True, key=lambda x: x[4]) # Sorting events by pitch
        
        if melody_conditioned_encoding: items[0][3] = 0 # Melody should always bear MIDI Channel 0 for code to work
        
        melody_list.append(items[0]) # Creating final melody list
        melody_chords.append(items) # Creating final chords list
        bass_melody.append(items[-1]) # Creating final bass melody list
    
    # [WIP] Melody-conditioned chords list
    if melody_conditioned_encoding == True:
      if not karaoke:
   
        previous_event = copy.deepcopy(melody_chords[0][0])

        for ev in melody_chords:
          hp = True
          ev.sort(reverse=False, key=lambda x: x[4]) # Sorting chord events by pitch
          for event in ev:
          
            # Computing events details
            start_time = int(event[1] - previous_event[1])
            
            duration = int(previous_event[2])

            if hp == True:
              if int(previous_event[4]) >= melody_pitch_baseline:
                channel = int(0)
                hp = False
              else:
                channel = int(previous_event[3]+1)
                hp = False  
            else:
              channel = int(previous_event[3]+1)
              hp = False

            pitch = int(previous_event[4])

            velocity = int(previous_event[5])

            # Converting to TXT if possible...
            
            try:
              txtc += str(chr(start_time + char_offset))
              txtc += str(chr(duration + char_offset))
              txtc += str(chr(pitch + char_offset))
              if output_velocity:
                txtc += str(chr(velocity + char_offset))
              if output_MIDI_channels:
                txtc += str(chr(channel + char_offset))

              if line_by_line_output:
              

                txtc += chr(10)
              else:

                txtc += chr(32)

              previous_event = copy.deepcopy(event)
            
            except:
              # print('Problematic MIDI event! Skipping...')
              continue

        if not line_by_line_output:
          txtc += chr(10)

        txt = txtc
        chords = melody_chords
    
    # Default stuff (not melody-conditioned/not-karaoke)
    else:      

      melody_chords.sort(reverse=False, key=lambda x: x[0][1])
      mel_chords = []
      for mc in melody_chords:
        mel_chords.extend(mc)

      if transform != 0: 
        chords = Tegridy_Transform(mel_chords, transform)
      else:
        chords = mel_chords

      # TXT Stuff
      previous_event = copy.deepcopy(chords[0])
      for event in chords:

        # Computing events details
        start_time = int(event[1] - previous_event[1])
        
        duration = int(previous_event[2])

        channel = int(previous_event[3])

        pitch = int(previous_event[4] + transpose_by)
        if flip == True:
          pitch = 127 - int(previous_event[4] + transpose_by)

        velocity = int(previous_event[5])

        # Converting to TXT if possible...
        try:
          txt += str(chr(start_time + char_offset))
          txt += str(chr(duration + char_offset))
          txt += str(chr(pitch + char_offset))
          if output_velocity:
            txt += str(chr(velocity + char_offset))
          if output_MIDI_channels:
            txt += str(chr(channel + char_offset))


          if chordify_TXT == True and int(event[1] - previous_event[1]) == 0:
            txt += ''      
          else:     
            if line_by_line_output:
              txt += chr(10)
            else:
              txt += chr(32) 
          
          previous_event = copy.deepcopy(event)
        
        except:
          # print('Problematic MIDI event. Skipping...')
          continue

      if not line_by_line_output:
        txt += chr(10)      

    # Karaoke stuff
    if karaoke:
      previous_event = copy.deepcopy(melody_list[0])
      for event in melody_list:

        # Computing events details
        start_time = int(event[1] - previous_event[1])
        
        duration = int(previous_event[2])

        channel = int(previous_event[3])

        pitch = int(previous_event[4] + transpose_by)

        velocity = int(previous_event[5])

        # Converting to TXT
        txt += str(chr(start_time + char_offset))
        txt += str(chr(duration + char_offset))
        txt += str(chr(pitch + char_offset))

        txt += str(chr(velocity + char_offset))      

        txt += '='
        for k in karaoke_events_matrix:
          if event[1] == k[1]:
            txt += str(k[2])          
            break

        if line_by_line_output:
          txt += chr(10)
        else:
          txt += chr(32) 
        
        previous_event = copy.deepcopy(event)
      
      if not line_by_line_output:
        txt += chr(10)

    # Helper aux/backup function for Karaoke
    karaokez.sort(reverse=False, key=lambda x: x[1])  

    # MuseNet sorting
    if musenet_encoding and not melody_conditioned_encoding and not karaoke:
      chords.sort(key=lambda x: (x[1], x[3]))
    
    # Final Melody sort
    melody_list.sort()

    return txt, melody_list, chords #, bass_melody # Bass melody aux output

###################################################################################

def Tegridy_Optimus_TXT_to_Notes_Converter(Optimus_TXT_String,
                                          line_by_line_dataset = True,
                                          has_velocities = True,
                                          has_MIDI_channels = True,
                                          dataset_MIDI_events_time_denominator = 1,
                                          char_encoding_offset = 30000,
                                          save_only_first_composition = True,
                                          simulate_velocity=True,
                                          karaoke=False):
                                                            
    '''Project Los Angeles
       Tegridy Code 2020'''

    print('Tegridy Optimus TXT to Notes Converter')
    print('Converting TXT to Notes list...Please wait...')

    song_name = ''

    if line_by_line_dataset:
      input_string = Optimus_TXT_String.split('\n')
    else:
      input_string = Optimus_TXT_String.split(' ')
    
    if line_by_line_dataset:
      name_string = Optimus_TXT_String.split('\n')[0].split('=')
    else:
      name_string = Optimus_TXT_String.split(' ')[0].split('=')

    if name_string[0] == 'SONG':
      song_name = name_string[1]

    output_list = []
    st = 0

    for i in range(2, len(input_string)-1):
      
      if save_only_first_composition:
        if input_string[i].split('=')[0] == 'SONG':

          song_name = name_string[1]
          break

      try:
        istring = input_string[i]
        #print(istring)

        if has_MIDI_channels == False:
          step = 4          
        
        if has_MIDI_channels == True:
          step = 5

        if has_velocities == False:
          step -= 1

        st += int(ord(istring[0]) - char_encoding_offset) * dataset_MIDI_events_time_denominator

        if not karaoke:
          for s in range(0, len(istring), step):
              if has_MIDI_channels==True:
                if step > 3 and len(istring) > 2:
                      out = []       
                      out.append('note')

                      out.append(st) # Start time
                      
                      out.append(int(ord(istring[s+1]) - char_encoding_offset) * dataset_MIDI_events_time_denominator) # Duration
                      
                      if has_velocities:
                        out.append(int(ord(istring[s+4]) - char_encoding_offset)) # Channel
                      else:
                        out.append(int(ord(istring[s+3]) - char_encoding_offset)) # Channel  
                      
                      out.append(int(ord(istring[s+2]) - char_encoding_offset)) # Pitch
                      
                      if simulate_velocity:
                        if s == 0:
                          sim_vel = int(ord(istring[s+2]) - char_encoding_offset)
                        out.append(sim_vel) # Simulated Velocity (= highest note's pitch)
                      else:                      
                        out.append(int(ord(istring[s+3]) - char_encoding_offset)) # Velocity
            
              if has_MIDI_channels==False:
                if step > 3 and len(istring) > 2:
                      out = []       
                      out.append('note')

                      out.append(st) # Start time
                      out.append(int(ord(istring[s+1]) - char_encoding_offset) * dataset_MIDI_events_time_denominator) # Duration
                      out.append(0) # Channel
                      out.append(int(ord(istring[s+2]) - char_encoding_offset)) # Pitch
                      
                      if simulate_velocity:
                        if s == 0:
                          sim_vel = int(ord(istring[s+2]) - char_encoding_offset)
                        out.append(sim_vel) # Simulated Velocity (= highest note's pitch)
                      else:                      
                        out.append(int(ord(istring[s+3]) - char_encoding_offset)) # Velocity

              if step == 3 and len(istring) > 2:
                      out = []       
                      out.append('note')

                      out.append(st) # Start time
                      out.append(int(ord(istring[s+1]) - char_encoding_offset) * dataset_MIDI_events_time_denominator) # Duration
                      out.append(0) # Channel
                      out.append(int(ord(istring[s+2]) - char_encoding_offset)) # Pitch
                      
                      out.append(int(ord(istring[s+2]) - char_encoding_offset)) # Velocity = Pitch

              output_list.append(out)

        if karaoke:
          try:
              out = []       
              out.append('note')

              out.append(st) # Start time
              out.append(int(ord(istring[1]) - char_encoding_offset) * dataset_MIDI_events_time_denominator) # Duration
              out.append(0) # Channel
              out.append(int(ord(istring[2]) - char_encoding_offset)) # Pitch
              
              if simulate_velocity:
                if s == 0:
                  sim_vel = int(ord(istring[2]) - char_encoding_offset)
                out.append(sim_vel) # Simulated Velocity (= highest note's pitch)
              else:                      
                out.append(int(ord(istring[3]) - char_encoding_offset)) # Velocity
              output_list.append(out)
              out = []
              if istring.split('=')[1] != '':
                out.append('lyric')
                out.append(st)
                out.append(istring[5:])
                output_list.append(out)
          except:
            continue
            

      except:
        print('Bad note string:', istring)
        continue

    # Simple error control just in case
    S = []
    for x in output_list:
      if len(x) == 6 or len(x) == 3:
        S.append(x)

    output_list.clear()    
    output_list = copy.deepcopy(S)


    print('Task complete! Enjoy! :)')

    return output_list, song_name

###################################################################################

def Optimus_Signature(chords_list, calculate_full_signature=False):

    '''Optimus Signature

    ---In the name of the search for a perfect score slice signature---
     
    Input: Flat chords list to evaluate

    Output: Full Optimus Signature as a list
            Best/recommended Optimus Signature as a list

    Project Los Angeles
    Tegridy Code 2021'''
    
    # Pitches

    ## StDev
    if calculate_full_signature:
      psd = statistics.stdev([int(y[4]) for y in chords_list])
    else:
      psd = 0

    ## Median
    pmh = statistics.median_high([int(y[4]) for y in chords_list])
    pm = statistics.median([int(y[4]) for y in chords_list])
    pml = statistics.median_low([int(y[4]) for y in chords_list])
    
    ## Mean
    if calculate_full_signature:
      phm = statistics.harmonic_mean([int(y[4]) for y in chords_list])
    else:
      phm = 0

    # Durations
    dur = statistics.median([int(y[2]) for y in chords_list])

    # Velocities

    vel = statistics.median([int(y[5]) for y in chords_list])

    # Beats
    mtds = statistics.median([int(abs(chords_list[i-1][1]-chords_list[i][1])) for i in range(1, len(chords_list))])
    if calculate_full_signature:
      hmtds = statistics.harmonic_mean([int(abs(chords_list[i-1][1]-chords_list[i][1])) for i in range(1, len(chords_list))])
    else:
      hmtds = 0

    # Final Optimus signatures
    full_Optimus_signature = [round(psd), round(pmh), round(pm), round(pml), round(phm), round(dur), round(vel), round(mtds), round(hmtds)]
    ########################    PStDev     PMedianH    PMedian    PMedianL    PHarmoMe    Duration    Velocity      Beat       HarmoBeat

    best_Optimus_signature = [round(pmh), round(pm), round(pml), round(dur, -1), round(vel, -1), round(mtds, -1)]
    ########################   PMedianH    PMedian    PMedianL      Duration        Velocity          Beat
    
    # Return...
    return full_Optimus_signature, best_Optimus_signature
    

###################################################################################
#
# TMIDI 2.0 Helper functions
#
###################################################################################

def Tegridy_Chord_Match(chord1, chord2, match_type=2):

    '''Tegridy Chord Match
     
    Input: Two chords to evaluate
           Match type: 2 = duration, channel, pitch, velocity
                       3 = channel, pitch, velocity
                       4 = pitch, velocity
                       5 = velocity

    Output: Match rating (0-100)
            NOTE: Match rating == -1 means identical source chords
            NOTE: Match rating == 100 means mutual shortest chord

    Project Los Angeles
    Tegridy Code 2021'''

    match_rating = 0

    if chord1 == []:
      return 0
    if chord2 == []:
      return 0

    if chord1 == chord2:
      return -1

    else:
      zipped_pairs = list(zip(chord1, chord2))
      zipped_diff = abs(len(chord1) - len(chord2))

      short_match = [False]
      for pair in zipped_pairs:
        cho1 = ' '.join([str(y) for y in pair[0][match_type:]])
        cho2 = ' '.join([str(y) for y in pair[1][match_type:]])
        if cho1 == cho2:
          short_match.append(True)
        else:
          short_match.append(False)
      
      if True in short_match:
        return 100

      pairs_ratings = []

      for pair in zipped_pairs:
        cho1 = ' '.join([str(y) for y in pair[0][match_type:]])
        cho2 = ' '.join([str(y) for y in pair[1][match_type:]])
        pairs_ratings.append(SM(None, cho1, cho2).ratio())

      match_rating = sum(pairs_ratings) / len(pairs_ratings) * 100

      return match_rating

###################################################################################

def Tegridy_Last_Chord_Finder(chords_list):

    '''Tegridy Last Chord Finder
     
    Input: Flat chords list

    Output: Last detected chord of the chords list
            Last chord start index in the original chords list
            First chord end index in the original chords list

    Project Los Angeles
    Tegridy Code 2021'''

    chords = []
    cho = []

    ptime = 0

    i = 0

    pc_idx = 0
    fc_idx = 0

    chords_list.sort(reverse=False, key=lambda x: x[1])
    
    for cc in chords_list:

      if cc[1] == ptime:
        
        cho.append(cc)

        ptime = cc[1]

      else:
        if pc_idx == 0: 
          fc_idx = chords_list.index(cc)
        pc_idx = chords_list.index(cc)
        
        chords.append(cho)
        
        cho = []
      
        cho.append(cc)
        
        ptime = cc[1]
        
        i += 1
      
    if cho != []: 
      chords.append(cho)
      i += 1
     
    return chords_list[pc_idx:], pc_idx, fc_idx

###################################################################################

def Tegridy_Advanced_Score_Slicer(chords_list, number_of_miliseconds_per_slice=4000, shuffle_slices=False):

    '''Tegridy Advanced Score Slicer
     
    Input: Flat chords list
           Number of miliseconds per slice

    Output: Sliced chords list with aligned slices features

    Project Los Angeles
    Tegridy Code 2021'''

    chords = []
    cho = []

    melody_list = []
    bass_melody = []

    time = number_of_miliseconds_per_slice
    ptime = 0

    i = 0

    chords_list.sort(reverse=False, key=lambda x: x[1])
    
    for cc in chords_list:

      if cc[1] <= time:
        
        cho.append(cc)
        ptime = cc[1]

      else:
        if cho != []:
          chords.append(cho)
        cho = []
        cho.append(cc)
        ptime = cc[1]
        time += number_of_miliseconds_per_slice
        i += 1
      
    if cho != []: 
      chords.append(cho)
      i += 1

    # Optional shuffle
    if shuffle_slices:
      random.shuffle(chords)

    sliced_chords_list = []

    for c in chords:
      if c != []:
        # Averages
        t0 = c[0][1]
        t1 = c[-1][1]
        tdel = abs(t1 - t0)
        avg_ms_per_pitch = int(tdel / len(c))

        # Delta time
        tds = [int(abs(c[i-1][1]-c[i][1]) / 1) for i in range(1, len(c))]
        if len(tds) != 0: avg_delta_time = int(sum(tds) / len(tds))

        # Chords list attributes
        p = int(sum([int(y[4]) for y in c]) / len(c))
        d = int(sum([int(y[2]) for y in c]) / len(c))
        ch = int(sum([int(y[3]) for y in c]) / len(c))
        v = int(sum([int(y[5]) for y in c]) / len(c))

        #print('Extracting melody...')

        #print('Grouping by start time. This will take a while...')
        values = set(map(lambda x:x[1], c)) # Non-multithreaded function version just in case

        groups = [[y for y in c if y[1]==x and len(y) == 6] for x in values] # Grouping notes into chords while discarting bad notes...
      
        #print('Sorting events...')
        for items in groups:
            items.sort(reverse=True, key=lambda x: x[4]) # Sorting events by pitch
            melody_list.append(items[0]) # Creating final melody list
            bass_melody.append(items[-1]) # Creating final bass melody list

        # Computing slice keys/avg. pitches
        if melody_list != []: mkey = int(sum([y[4] for y in melody_list]) / len(melody_list))
        if bass_melody != []: bkey = int(sum([y[4] for y in bass_melody]) / len(bass_melody))

        sliced_chords_list.append([c, mkey, bkey, avg_ms_per_pitch, d, ch, p, v])

    return sliced_chords_list

###################################################################################

def Tegridy_Chords_Generator(chords_list, shuffle_pairs = True, remove_single_notes=False):

    '''Tegridy Score Chords Pairs Generator
     
    Input: Flat chords list
           Shuffle pairs (recommended)

    Output: List of chords
            
            Average time(ms) per chord
            Average time(ms) per pitch
            Average chords delta time

            Average duration
            Average channel
            Average pitch
            Average velocity

    Project Los Angeles
    Tegridy Code 2021'''

    chords = []
    cho = []

    i = 0

    # Sort by start time
    chords_list.sort(reverse=False, key=lambda x: x[1])

    # Main loop
    pcho = chords_list[0]
    for cc in chords_list:
      if cc[1] == pcho[1]:
        
        cho.append(cc)
        pcho = copy.deepcopy(cc)

      else:
        if not remove_single_notes:
          chords.append(cho)
          cho = []
          cho.append(cc)
          pcho = copy.deepcopy(cc)
          
          i += 1
        else:
          if len(cho) > 1:
            chords.append(cho)
          cho = []
          cho.append(cc)
          pcho = copy.deepcopy(cc)
            
          i += 1  
    
    # Averages
    t0 = chords[0][0][1]
    t1 = chords[-1][-1][1]
    tdel = abs(t1 - t0)
    avg_ms_per_chord = int(tdel / i)
    avg_ms_per_pitch = int(tdel / len(chords_list))

    # Delta time
    tds = [int(abs(chords_list[i-1][1]-chords_list[i][1]) / 1) for i in range(1, len(chords_list))]
    if len(tds) != 0: avg_delta_time = int(sum(tds) / len(tds))

    # Chords list attributes
    p = int(sum([int(y[4]) for y in chords_list]) / len(chords_list))
    d = int(sum([int(y[2]) for y in chords_list]) / len(chords_list))
    c = int(sum([int(y[3]) for y in chords_list]) / len(chords_list))
    v = int(sum([int(y[5]) for y in chords_list]) / len(chords_list))

    # Final shuffle
    if shuffle_pairs:
      random.shuffle(chords)

    return chords, [avg_ms_per_chord, avg_ms_per_pitch, avg_delta_time], [d, c, p, v]

###################################################################################

def Tegridy_Chords_List_Music_Features(chords_list, st_dur_div = 1, pitch_div = 1, vel_div = 1):

    '''Tegridy Chords List Music Features
     
    Input: Flat chords list

    Output: A list of the extracted chords list's music features

    Project Los Angeles
    Tegridy Code 2021'''

    chords_list1 = [x for x in chords_list if x]
    chords_list1.sort(reverse=False, key=lambda x: x[1])
    
    # Features extraction code

    melody_list = []
    bass_melody = []
    melody_chords = []
    mel_avg_tds = []
    mel_chrd_avg_tds = []
    bass_melody_avg_tds = []

    #print('Grouping by start time. This will take a while...')
    values = set(map(lambda x:x[1], chords_list1)) # Non-multithreaded function version just in case

    groups = [[y for y in chords_list1 if y[1]==x and len(y) == 6] for x in values] # Grouping notes into chords while discarting bad notes...

    #print('Sorting events...')
    for items in groups:
        items.sort(reverse=True, key=lambda x: x[4]) # Sorting events by pitch
        melody_list.append(items[0]) # Creating final melody list
        melody_chords.append(items) # Creating final chords list
        bass_melody.append(items[-1]) # Creating final bass melody list

    #print('Final sorting by start time...')      
    melody_list.sort(reverse=False, key=lambda x: x[1]) # Sorting events by start time
    melody_chords.sort(reverse=False, key=lambda x: x[0][1]) # Sorting events by start time
    bass_melody.sort(reverse=False, key=lambda x: x[1]) # Sorting events by start time

    # Extracting music features from the chords list
    
    # Melody features
    mel_avg_pitch = int(sum([y[4] for y in melody_list]) / len(melody_list) / pitch_div)
    mel_avg_dur = int(sum([int(y[2] / st_dur_div) for y in melody_list]) / len(melody_list))
    mel_avg_vel = int(sum([int(y[5] / vel_div) for y in melody_list]) / len(melody_list))
    mel_avg_chan = int(sum([int(y[3]) for y in melody_list]) / len(melody_list))
    
    mel_tds = [int(abs(melody_list[i-1][1]-melody_list[i][1])) for i in range(1, len(melody_list))]
    if len(mel_tds) != 0: mel_avg_tds = int(sum(mel_tds) / len(mel_tds) / st_dur_div)
    
    melody_features = [mel_avg_tds, mel_avg_dur, mel_avg_chan, mel_avg_pitch, mel_avg_vel]

    # Chords list features
    mel_chrd_avg_pitch = int(sum([y[4] for y in chords_list1]) / len(chords_list1) / pitch_div)
    mel_chrd_avg_dur = int(sum([int(y[2] / st_dur_div) for y in chords_list1]) / len(chords_list1))
    mel_chrd_avg_vel = int(sum([int(y[5] / vel_div) for y in chords_list1]) / len(chords_list1))
    mel_chrd_avg_chan = int(sum([int(y[3]) for y in chords_list1]) / len(chords_list1))
    
    mel_chrd_tds = [int(abs(chords_list1[i-1][1]-chords_list1[i][1])) for i in range(1, len(chords_list1))]
    if len(mel_tds) != 0: mel_chrd_avg_tds = int(sum(mel_chrd_tds) / len(mel_chrd_tds) / st_dur_div)
    
    chords_list_features = [mel_chrd_avg_tds, mel_chrd_avg_dur, mel_chrd_avg_chan, mel_chrd_avg_pitch, mel_chrd_avg_vel]

    # Bass melody features
    bass_melody_avg_pitch = int(sum([y[4] for y in bass_melody]) / len(bass_melody) / pitch_div)
    bass_melody_avg_dur = int(sum([int(y[2] / st_dur_div) for y in bass_melody]) / len(bass_melody))
    bass_melody_avg_vel = int(sum([int(y[5] / vel_div) for y in bass_melody]) / len(bass_melody))
    bass_melody_avg_chan = int(sum([int(y[3]) for y in bass_melody]) / len(bass_melody))
    
    bass_melody_tds = [int(abs(bass_melody[i-1][1]-bass_melody[i][1])) for i in range(1, len(bass_melody))]
    if len(bass_melody_tds) != 0: bass_melody_avg_tds = int(sum(bass_melody_tds) / len(bass_melody_tds) / st_dur_div)
    
    bass_melody_features = [bass_melody_avg_tds, bass_melody_avg_dur, bass_melody_avg_chan, bass_melody_avg_pitch, bass_melody_avg_vel]
    
    # A list to return all features
    music_features = []

    music_features.extend([len(chords_list1)]) # Count of the original chords list notes
    
    music_features.extend(melody_features) # Extracted melody features
    music_features.extend(chords_list_features) # Extracted chords list features
    music_features.extend(bass_melody_features) # Extracted bass melody features
    music_features.extend([sum([y[4] for y in chords_list1])]) # Sum of all pitches in the original chords list

    return music_features

###################################################################################

def Tegridy_Transform(chords_list, to_pitch=60, to_velocity=-1):

    '''Tegridy Transform
     
    Input: Flat chords list
           Desired average pitch (-1 == no change)
           Desired average velocity (-1 == no change)

    Output: Transformed flat chords list

    Project Los Angeles
    Tegridy Code 2021'''

    transformed_chords_list = []

    chords_list.sort(reverse=False, key=lambda x: x[1])

    chords_list_features = Optimus_Signature(chords_list)[1]

    pitch_diff = chords_list_features[1] - to_pitch
    velocity_diff = chords_list_features[4] - to_velocity

    for c in chords_list:
      cc = copy.deepcopy(c)
      
      if to_pitch != -1: 
        cc[4] = c[4] - pitch_diff
      
      if to_velocity != -1: 
        cc[5] = c[5] - velocity_diff
      
      transformed_chords_list.append(cc)

    return transformed_chords_list

###################################################################################

def Tegridy_MIDI_Zip_Notes_Summarizer(chords_list, match_type = 4):

    '''Tegridy MIDI Zip Notes Summarizer
     
    Input: Flat chords list / SONG
           Match type according to 'note' event of MIDI.py

    Output: Summarized chords list
            Number of summarized notes
            Number of dicarted notes

    Project Los Angeles
    Tegridy Code 2021'''

    i = 0
    j = 0
    out1 = []
    pout = []
 

    for o in chords_list:

      # MIDI Zip

      if o[match_type:] not in pout:
        pout.append(o[match_type:])
        
        out1.append(o)
        j += 1
      
      else:
        i += 1

    return out1, i

###################################################################################

def Tegridy_Score_Chords_Pairs_Generator(chords_list, shuffle_pairs = True, remove_single_notes=False):

    '''Tegridy Score Chords Pairs Generator
     
    Input: Flat chords list
           Shuffle pairs (recommended)

    Output: Score chords pairs list
            Number of created pairs
            Number of detected chords

    Project Los Angeles
    Tegridy Code 2021'''

    chords = []
    cho = []

    i = 0
    j = 0

    chords_list.sort(reverse=False, key=lambda x: x[1])
    pcho = chords_list[0]
    for cc in chords_list:
      if cc[1] == pcho[1]:
        
        cho.append(cc)
        pcho = copy.deepcopy(cc)

      else:
        if not remove_single_notes:
          chords.append(cho)
          cho = []
          cho.append(cc)
          pcho = copy.deepcopy(cc)
          
          i += 1
        else:
          if len(cho) > 1:
            chords.append(cho)
          cho = []
          cho.append(cc)
          pcho = copy.deepcopy(cc)
            
          i += 1  
    
    chords_pairs = []
    for i in range(len(chords)-1):
      chords_pairs.append([chords[i], chords[i+1]])
      j += 1
    if shuffle_pairs: random.shuffle(chords_pairs)

    return chords_pairs, j, i

###################################################################################

def Tegridy_Sliced_Score_Pairs_Generator(chords_list, number_of_miliseconds_per_slice=2000, shuffle_pairs = False):

    '''Tegridy Sliced Score Pairs Generator
     
    Input: Flat chords list
           Number of miliseconds per slice

    Output: Sliced score pairs list
            Number of created slices

    Project Los Angeles
    Tegridy Code 2021'''

    chords = []
    cho = []

    time = number_of_miliseconds_per_slice 

    i = 0

    chords_list1 = [x for x in chords_list if x]
    chords_list1.sort(reverse=False, key=lambda x: x[1])
    pcho = chords_list1[0]
    for cc in chords_list1[1:]:

      if cc[1] <= time:
        
        cho.append(cc)

      else:
        if cho != [] and pcho != []: chords.append([pcho, cho])
        pcho = copy.deepcopy(cho)
        cho = []
        cho.append(cc)
        time += number_of_miliseconds_per_slice
        i += 1
      
    if cho != [] and pcho != []: 
      chords.append([pcho, cho])
      pcho = copy.deepcopy(cho)
      i += 1
    
    if shuffle_pairs: random.shuffle(chords)

    return chords, i

###################################################################################

def Tegridy_Timings_Converter(chords_list, 
                              max_delta_time = 1000, 
                              fixed_start_time = 300, 
                              start_time = 0,
                              start_time_multiplier = 1,
                              durations_multiplier = 1):

    '''Tegridy Timings Converter
     
    Input: Flat chords list
           Max delta time allowed between notes
           Fixed start note time for excessive gaps

    Output: Converted flat chords list

    Project Los Angeles
    Tegridy Code 2021'''

    song = chords_list

    song1 = []

    p = song[0]

    p[1] = start_time

    time = start_time

    delta = [0]

    for i in range(len(song)):
      if song[i][0] == 'note':
        ss = copy.deepcopy(song[i])
        if song[i][1] != p[1]:
          
          if abs(song[i][1] - p[1]) > max_delta_time:
            time += fixed_start_time
          else:
            time += abs(song[i][1] - p[1])
            delta.append(abs(song[i][1] - p[1]))

          ss[1] = int(round(time * start_time_multiplier, -1))
          ss[2] = int(round(song[i][2] * durations_multiplier, -1))
          song1.append(ss)
          
          p = copy.deepcopy(song[i])
        else:
          
          ss[1] = int(round(time * start_time_multiplier, -1))
          ss[2] = int(round(song[i][2] * durations_multiplier, -1))
          song1.append(ss)
          
          p = copy.deepcopy(song[i])
      
      else:
        ss = copy.deepcopy(song[i])
        ss[1] = time
        song1.append(ss)
        
    average_delta_st = int(sum(delta) / len(delta))
    average_duration = int(sum([y[2] for y in song1 if y[0] == 'note']) / len([y[2] for y in song1 if y[0] == 'note']))

    song1.sort(reverse=False, key=lambda x: x[1])

    return song1, time, average_delta_st, average_duration

###################################################################################

def Tegridy_Score_Slicer(chords_list, number_of_miliseconds_per_slice=2000, overlap_notes = 0, overlap_chords=False):

    '''Tegridy Score Slicer
     
    Input: Flat chords list
           Number of miliseconds per slice

    Output: Sliced chords list
            Number of created slices

    Project Los Angeles
    Tegridy Code 2021'''

    chords = []
    cho = []

    time = number_of_miliseconds_per_slice
    ptime = 0

    i = 0

    pc_idx = 0

    chords_list.sort(reverse=False, key=lambda x: x[1])
    
    for cc in chords_list:

      if cc[1] <= time:
        
        cho.append(cc)

        if ptime != cc[1]:
          pc_idx = cho.index(cc)

        ptime = cc[1]


      else:

        if overlap_chords:
          chords.append(cho)
          cho.extend(chords[-1][pc_idx:])
        
        else:
          chords.append(cho[:pc_idx])
        
        cho = []
      
        cho.append(cc)
        
        time += number_of_miliseconds_per_slice
        ptime = cc[1]
        
        i += 1
      
    if cho != []: 
      chords.append(cho)
      i += 1
    
    return [x for x in chords if x], i

###################################################################################

def Tegridy_TXT_Tokenizer(input_TXT_string, line_by_line_TXT_string=True):

    '''Tegridy TXT Tokenizer
     
    Input: TXT String

    Output: Tokenized TXT string + forward and reverse dics
    
    Project Los Angeles
    Tegridy Code 2021'''

    print('Tegridy TXT Tokenizer')

    if line_by_line_TXT_string:
      T = input_TXT_string.split()
    else:
      T = input_TXT_string.split(' ')

    DIC = dict(zip(T, range(len(T))))
    RDIC = dict(zip(range(len(T)), T))

    TXTT = ''

    for t in T:
      try:
        TXTT += chr(DIC[t])
      except:
        print('Error. Could not finish.')
        return TXTT, DIC, RDIC
    
    print('Done!')
    
    return TXTT, DIC, RDIC

###################################################################################

def Tegridy_TXT_DeTokenizer(input_Tokenized_TXT_string, RDIC):

    '''Tegridy TXT Tokenizer
     
    Input: Tokenized TXT String
           

    Output: DeTokenized TXT string
    
    Project Los Angeles
    Tegridy Code 2021'''

    print('Tegridy TXT DeTokenizer')

    Q = list(input_Tokenized_TXT_string)
    c = 0
    RTXT = ''
    for q in Q:
      try:
        RTXT += RDIC[ord(q)] + chr(10)
      except:
        c+=1

    print('Number of errors:', c)

    print('Done!')

    return RTXT

###################################################################################

def Tegridy_Optimus_TXT_to_INT_Converter(TXT_String, time_denominator=128):

  '''Project Los Angeles
     Tegridy Code 2021'''

  INT8_List = []

  for i in TXT_String:
    try:
      a = int((ord(i) // time_denominator) // 128)
      b = int(ord(i) % time_denominator)

      INT8_List.append(a)
      INT8_List.append(b)
    except:
      print('Bad TXT bits:', a, '/', b)
      continue

  return INT8_List

###################################################################################

def Tegridy_Optimus_INT_to_TXT_Converter(INT8_List, time_denominator=128):

  TXT_String = ''

  for i in range(0, len(INT8_List)-1, 2):
    try:
      a = INT8_List[i] * time_denominator * 128
      b = INT8_List[i+1]
    
      TXT_String += chr(a+b)
    except:
      print('Bad INT bits:', a, '/', b)
      continue

  return TXT_String

###################################################################################

def Tegridy_Optimus_Sum_Intro_Rand_End_Sampler(MIDI_file, number_of_notes_in_samples = 256):

  '''Project Los Angeles
     Tegridy Code 2021'''

  INTRO = []
  RAND = []
  END = []

  SUM = 0

  txt, melody_list, chords = Optimus_MIDI_TXT_Processor(MIDI_file, True, False, 1, False, False, -1, range(127))

  if len(chords) < number_of_notes_in_samples:
    number_of_notes_in_samples = len(chords)

  for i in chords[:number_of_notes_in_samples]:
    INTRO.append(i[4])

  r = secrets.randbelow(len(chords) - number_of_notes_in_samples)
  
  for i in chords[r:r+number_of_notes_in_samples]: 
    RAND.append(i[4])
  
  for i in chords[len(chords)-number_of_notes_in_samples:len(chords)]: 
    END.append(i[4])

  for i in chords:
    SUM += i[4]

  return SUM, INTRO, RAND, END

###################################################################################

def Tegridy_MIDI_Signature(melody, chords):

  '''Input: flat melody list and flat chords list
     
     Output: Melody signature and Chords signature
     
     Project Los Angeles
     Tegridy Code 2021'''

  # prepping data
  melody_list_f = []
  chords_list_f = []

  # melody
  m_st_sum = sum([y[1] for y in melody])
  m_st_avg = int(m_st_sum / len(melody))
  m_du_sum = sum([y[2] for y in melody])
  m_du_avg = int(m_du_sum / len(melody))
  m_ch_sum = sum([y[3] for y in melody])
  m_ch_avg = int(m_ch_sum / len(melody))
  m_pt_sum = sum([y[4] for y in melody])
  m_pt_avg = int(m_pt_sum / len(melody))
  m_vl_sum = sum([y[5] for y in melody])
  m_vl_avg = int(m_vl_sum / len(melody))
  
  melody_list_f.extend([m_st_sum, 
                        m_st_avg,
                        m_du_sum,
                        m_du_avg,
                        m_ch_sum,
                        m_ch_avg,
                        m_pt_sum,
                        m_pt_avg,
                        m_vl_sum,
                        m_vl_avg])

  # chords
  c_st_sum = sum([y[1] for y in chords])
  c_st_avg = int(c_st_sum / len(chords))
  c_du_sum = sum([y[2] for y in chords])
  c_du_avg = int(c_du_sum / len(chords))
  c_ch_sum = sum([y[3] for y in chords])
  c_ch_avg = int(c_ch_sum / len(chords))
  c_pt_sum = sum([y[4] for y in chords])
  c_pt_avg = int(c_pt_sum / len(chords))
  c_vl_sum = sum([y[5] for y in chords])
  c_vl_avg = int(c_vl_sum / len(chords))

  chords_list_f.extend([c_st_sum, 
                        c_st_avg,
                        c_du_sum,
                        c_du_avg,
                        c_ch_sum,
                        c_ch_avg,
                        c_pt_sum,
                        c_pt_avg,
                        c_vl_sum,
                        c_vl_avg])

  return melody_list_f, chords_list_f

###################################################################################

def Tegridy_List_Slicer(input_list, number_of_slices):

  '''Input: List to slice
            Number of desired slices
     
     Output: Sliced list of lists
     
     Project Los Angeles
     Tegridy Code 2021'''

  for i in range(0, len(input_list), number_of_slices):
     yield input_list[i:i + number_of_slices]

###################################################################################

# Alternative MIDI Processor (Google Magenta note-seq representation)
# Useful in some cases and for some Music AI implementations/architectures. 

# Based on the repo/code of Music X Lab at NYU Shanghai:
# https://github.com/music-x-lab/POP909-Dataset
# Please note that the license for the code below is MIT as requested by the dev.

###################################################################################

# Copyright (c) 2020 Music X Lab

# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:

# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.

# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.

###################################################################################

"""
Notes Representation Processor
============

These are core classes of representation processor.

Repr Processor: the basic representation processor
    - Event Processor
"""

class Tegridy_ReprProcessor(ABC):

    """Abstract base class severing as the representation processor.

    It provides the following abstract methods.
    - encode(self, note_seq): encode the note sequence into the representation sequence.
    - decode(self, repr_seq): decode the representation sequence into the note sequence.

    Notes
    -----
    The base representation processor class includes the convertion between the note sequence and the representation sequence.
    In general, we assume the input note sequence has already been quantized.
    In that, the smallest unit of the quantization is actually 1 tick no matter what resolution is.
    If you init "min_step" to be larger than 1, we assume you wish to compress all the base tick.
    e.g. min_step = 2, then the whole ticks will be convertd half.
    If you do this, the representation convertion may not be 100% correct.
    -----

    """

    def __init__(self, min_step: int = 1):
        self.min_step = min_step

    def _compress(self, note_seq=None):
        """Return the compressed note_seq based on the min_step > 1.

        Parameters
        ----------
        note_seq : Note Array.
        ----------

        WARNING: If you do this, the representation convertion may not be 100% correct.

        """
        new_note_seq = [
            Note(
                start=int(d.start / self.min_step),
                end=int(d.end / self.min_step),
                pitch=d.pitch,
                velocity=d.velocity,
            )
            for d in note_seq
        ]
        return new_note_seq

    def _expand(self, note_seq=None):
        """Return the expanded note_seq based on the min_step > 1.

        Parameters
        ----------
        note_seq : Note Array.
        ----------

        WARNING: If you do this, the representation convertion may not be 100% correct.

        """
        new_note_seq = [
            Note(
                start=int(d.start * self.min_step),
                end=int(d.end * self.min_step),
                pitch=d.pitch,
                velocity=d.velocity,
            )
            for d in note_seq
        ]
        return new_note_seq

    @abstractmethod
    def encode(self, note_seq=None):
        """encode the note sequence into the representation sequence.

        Parameters
        ----------
        note_seq= the input {Note} sequence

        Returns
        ----------
        repr_seq: the representation numpy sequence

        """

    @abstractmethod
    def decode(self, repr_seq=None):
        """decode the representation sequence into the note sequence.

        Parameters
        ----------
        repr_seq: the representation numpy sequence

        Returns
        ----------
        note_seq= the input {Note} sequence

        """

###################################################################################
# pretty_midi Note class
# Code is from original pretty_midi repo:
# https://github.com/craffel/pretty-midi/blob/master/pretty_midi/containers.py
###################################################################################
class Note(object):
    """A note event.
    Parameters
    ----------
    velocity : int
        Note velocity.
    pitch : int
        Note pitch, as a MIDI note number.
    start : float
        Note on time, absolute, in seconds.
    end : float
        Note off time, absolute, in seconds.
    """

    def __init__(self, velocity, pitch, start, end):
        self.velocity = velocity
        self.pitch = pitch
        self.start = start
        self.end = end

    def get_duration(self):
        """Get the duration of the note in seconds."""
        return self.end - self.start

    @property
    def duration(self):
        return self.get_duration()

    def __repr__(self):
        return 'Note(start={:f}, end={:f}, pitch={}, velocity={})'.format(
            self.start, self.end, self.pitch, self.velocity)

###################################################################################

class Tegridy_RPR_MidiEventProcessor(Tegridy_ReprProcessor):
  
    """Midi Event Representation Processor.

    Representation Format:
    -----
    Size: L * D:
        - L for the sequence (event) length
        - D = 1 {
            0-127: note-on event,
            128-255: note-off event,
            256-355(default):
                tick-shift event
                256 for one tick, 355 for 100 ticks
                the maximum number of tick-shift can be specified
            356-388 (default):
                velocity event
                the maximum number of quantized velocity can be specified
            }

    Parameters:
    -----
    min_step(optional):
        minimum quantification step
        decide how many ticks to be the basic unit (default = 1)
    tick_dim(optional):
        tick-shift event dimensions
        the maximum number of tick-shift (default = 100)
    velocity_dim(optional):
        velocity event dimensions
        the maximum number of quantized velocity (default = 32, max = 128)

    e.g.

    [C5 - - - E5 - - / G5 - - / /]
    ->
    [380, 60, 259, 188, 64, 258, 192, 256, 67, 258, 195, 257]

    """

    def __init__(self, **kwargs):
        self.name = "midievent"
        min_step = 1
        if "min_step" in kwargs:
            min_step = kwargs["min_step"]
        super(Tegridy_RPR_MidiEventProcessor, self).__init__(min_step)
        self.tick_dim = 100
        self.velocity_dim = 32
        if "tick_dim" in kwargs:
            self.tick_dim = kwargs["tick_dim"]
        if "velocity_dim" in kwargs:
            self.velocity_dim = kwargs["velocity_dim"]
        if self.velocity_dim > 128:
            raise ValueError(
                "velocity_dim cannot be larger than 128", self.velocity_dim
            )
        self.max_vocab = 256 + self.tick_dim + self.velocity_dim
        self.start_index = {
            "note_on": 0,
            "note_off": 128,
            "time_shift": 256,
            "velocity": 256 + self.tick_dim,
        }

    def encode(self, note_seq=None):
        """Return the note token

        Parameters
        ----------
        note_seq : Note List.

        Returns
        ----------
        repr_seq: Representation List

        """
        if note_seq is None:
            return []
        if self.min_step > 1:
            note_seq = self._compress(note_seq)
        notes = note_seq
        events = []
        meta_events = []
        for note in notes:
            token_on = {
                "name": "note_on",
                "time": note.start,
                "pitch": note.pitch,
                "vel": note.velocity,
            }
            token_off = {
                "name": "note_off",
                "time": note.end,
                "pitch": note.pitch,
                "vel": None,
            }
            meta_events.extend([token_on, token_off])
        meta_events.sort(key=lambda x: x["pitch"])    
        meta_events.sort(key=lambda x: x["time"])
        time_shift = 0
        cur_vel = 0
        for me in meta_events:
            duration = int((me["time"] - time_shift) * 100)
            while duration >= self.tick_dim:
                events.append(
                    self.start_index["time_shift"] + self.tick_dim - 1
                )
                duration -= self.tick_dim
            if duration > 0:
                events.append(self.start_index["time_shift"] + duration - 1)
            if me["vel"] is not None:
                if cur_vel != me["vel"]:
                    cur_vel = me["vel"]
                    events.append(
                        self.start_index["velocity"]
                        + int(round(me["vel"] * self.velocity_dim / 128))
                    )
            events.append(self.start_index[me["name"]] + me["pitch"])
            time_shift = me["time"]
        return events

    def decode(self, repr_seq=None):
        """Return the note seq

        Parameters
        ----------
        repr_seq: Representation Sequence List

        Returns
        ----------
        note_seq : Note List.

        """
        # print(repr_seq)
        if repr_seq is None:
            return []
        time_shift = 0.0
        cur_vel = 0
        meta_events = []
        note_on_dict = {}
        notes = []
        for e in repr_seq:
            if self.start_index["note_on"] <= e < self.start_index["note_off"]:
                token_on = {
                    "name": "note_on",
                    "time": time_shift,
                    "pitch": e,
                    "vel": cur_vel,
                }
                meta_events.append(token_on)
            if (
                self.start_index["note_off"]
                <= e
                < self.start_index["time_shift"]
            ):
                token_off = {
                    "name": "note_off",
                    "time": time_shift,
                    "pitch": e - self.start_index["note_off"],
                    "vel": cur_vel,
                }
                meta_events.append(token_off)
            if (
                self.start_index["time_shift"]
                <= e
                < self.start_index["velocity"]
            ):
                time_shift += (e - self.start_index["time_shift"] + 1) * 0.01
            if self.start_index["velocity"] <= e < self.max_vocab:
                cur_vel = int(round(
                    (e - self.start_index["velocity"])
                    * 128
                    / self.velocity_dim)
                )
        skip_notes = []
        for me in meta_events:
            if me["name"] == "note_on":
                note_on_dict[me["pitch"]] = me
            elif me["name"] == "note_off":
                try:
                    token_on = note_on_dict[me["pitch"]]
                    token_off = me
                    if token_on["time"] == token_off["time"]:
                        continue
                    notes.append(
                        Note(
                            velocity=token_on["vel"],
                            pitch=int(token_on["pitch"]),
                            start=token_on["time"],
                            end=token_off["time"],
                        )
                    )
                except:
                    skip_notes.append(me)
        notes.sort(key=lambda x: x.start)
        if self.min_step > 1:
            notes = self._expand(notes)
        # print(notes)
        return notes

###################################################################################

# This is the end of the TMIDI Python module

###################################################################################