Spaces:
Runtime error
Runtime error
File size: 7,735 Bytes
650d33e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
# This file is copied from https://github.com/rnwzd/FSPBT-Image-Translation/blob/master/data.py
# MIT License
# Copyright (c) 2022 Lorenzo Breschi
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
# The above copyright notice and this permission notice shall be included in all
# copies or substantial portions of the Software.
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
from typing import Callable, Dict
import torch
from torch.utils.data import Dataset
import torchvision.transforms.functional as F
from torchvision import transforms
import pytorch_lightning as pl
from collections.abc import Iterable
# image reader writer
from pathlib import Path
from PIL import Image
from typing import Tuple
def read_image(filepath: Path, mode: str = None) -> Image:
with open(filepath, 'rb') as file:
image = Image.open(file)
return image.convert(mode)
image2tensor = transforms.ToTensor()
tensor2image = transforms.ToPILImage()
def write_image(image: Image, filepath: Path):
filepath.parent.mkdir(parents=True, exist_ok=True)
image.save(str(filepath))
def read_image_tensor(filepath: Path, mode: str = 'RGB') -> torch.Tensor:
return image2tensor(read_image(filepath, mode))
def write_image_tensor(input: torch.Tensor, filepath: Path):
write_image(tensor2image(input), filepath)
def get_valid_indices(H: int, W: int, patch_size: int, random_overlap: int = 0):
vih = torch.arange(random_overlap, H-patch_size -
random_overlap+1, patch_size)
viw = torch.arange(random_overlap, W-patch_size -
random_overlap+1, patch_size)
if random_overlap > 0:
rih = torch.randint_like(vih, -random_overlap, random_overlap)
riw = torch.randint_like(viw, -random_overlap, random_overlap)
vih += rih
viw += riw
vi = torch.stack(torch.meshgrid(vih, viw)).view(2, -1).t()
return vi
def cut_patches(input: torch.Tensor, indices: Tuple[Tuple[int, int]], patch_size: int, padding: int = 0):
# TODO use slices to get all patches at the same time ?
patches_l = []
for n in range(len(indices)):
patch = F.crop(input, *(indices[n]-padding),
*(patch_size+padding*2,)*2)
patches_l.append(patch)
patches = torch.cat(patches_l, dim=0)
return patches
def prepare_data(data_path: Path, read_func: Callable = read_image_tensor) -> Dict:
"""
Takes a data_path of a folder which contains subfolders with input, target, etc.
lablelled by the same names.
:param data_path: Path of the folder containing data
:param read_func: function that reads data and returns a tensor
"""
data_dict = {}
subdir_names = ["target", "input", "mask"] # ,"helper"
# checks only files for which there is an target
# TODO check for images
name_ls = [file.name for file in (
data_path / "target").iterdir() if file.is_file()]
subdirs = [data_path / sdn for sdn in subdir_names]
for sd in subdirs:
if sd.is_dir():
data_ls = []
files = [sd / name for name in name_ls]
for file in files:
tensor = read_func(file)
H, W = tensor.shape[-2:]
data_ls.append(tensor)
# TODO check that all sizes match
data_dict[sd.name] = torch.stack(data_ls, dim=0)
data_dict['name'] = name_ls
data_dict['len'] = len(data_dict['name'])
data_dict['H'] = H
data_dict['W'] = W
return data_dict
# TODO an image is loaded whenever a patch is needed, this may be a bottleneck
class DataDictLoader():
def __init__(self, data_dict: Dict,
batch_size: int = 16,
max_length: int = 128,
shuffle: bool = False):
"""
"""
self.batch_size = batch_size
self.shuffle = shuffle
self.batch_size = batch_size
self.data_dict = data_dict
self.dataset_len = data_dict['len']
self.len = self.dataset_len if max_length is None else min(
self.dataset_len, max_length)
# Calculate # batches
num_batches, remainder = divmod(self.len, self.batch_size)
if remainder > 0:
num_batches += 1
self.num_batches = num_batches
def __iter__(self):
if self.shuffle:
r = torch.randperm(self.dataset_len)
self.data_dict = {k: v[r] if isinstance(
v, Iterable) else v for k, v in self.data_dict.items()}
self.i = 0
return self
def __next__(self):
if self.i >= self.len:
raise StopIteration
batch = {k: v[self.i:self.i+self.batch_size]
if isinstance(v, Iterable) else v for k, v in self.data_dict.items()}
self.i += self.batch_size
return batch
def __len__(self):
return self.num_batches
class PatchDataModule(pl.LightningDataModule):
def __init__(self, data_dict,
patch_size: int = 2**5,
batch_size: int = 2**4,
patch_num: int = 2**6):
super().__init__()
self.data_dict = data_dict
self.H, self.W = data_dict['H'], data_dict['W']
self.len = data_dict['len']
self.batch_size = batch_size
self.patch_size = patch_size
self.patch_num = patch_num
def dataloader(self, data_dict, **kwargs):
return DataDictLoader(data_dict, **kwargs)
def train_dataloader(self):
patches = self.cut_patches()
return self.dataloader(patches, batch_size=self.batch_size, shuffle=True,
max_length=self.patch_num)
def val_dataloader(self):
return self.dataloader(self.data_dict, batch_size=1)
def test_dataloader(self):
return self.dataloader(self.data_dict) # TODO batch size
def cut_patches(self):
# TODO cycle once
patch_indices = get_valid_indices(
self.H, self.W, self.patch_size, self.patch_size//4)
dd = {k: cut_patches(
v, patch_indices, self.patch_size) for k, v in self.data_dict.items()
if isinstance(v, torch.Tensor)
}
threshold = 0.1
mask_p = torch.mean(
dd.get('mask', torch.ones_like(dd['input'])), dim=(-1, -2, -3))
masked_idx = (mask_p > threshold).nonzero(as_tuple=True)[0]
dd = {k: v[masked_idx] for k, v in dd.items()}
dd['len'] = len(masked_idx)
dd['H'], dd['W'] = (self.patch_size,)*2
return dd
class ImageDataset(Dataset):
def __init__(self, file_paths: Iterable, read_func: Callable = read_image_tensor):
self.file_paths = file_paths
def __getitem__(self, idx: int) -> dict:
file = self.file_paths[idx]
return read_image_tensor(file), file.name
def __len__(self) -> int:
return len(self.file_paths) |